FINAL MY5 (2023) MONITORING REPORT

HERON STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina Cape Fear River Basin Cataloging Unit 03030002

DMS Project ID No. 100014 Full Delivery Contract No. 7192 RFP No. 16-006990 USACE Action ID No. SAW-2017-01471 DWR Project No. 17-0920

Data Collection: January 2023 – October 2023 Submission: January 2024

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Restoration Systems, LLC 1101 Haynes St. Suite 211 Raleigh, North Carolina Ph: (919) 755-9490 Fx: (919) 755-9492

Response to DMS Comments - MY 5 (2023)

Heron Stream and Wetland Mitigation Site (DMS #100014) Cape Fear River Basin 03030002, Alamance County Contract No. 7192

Comments Received (Black Text) & Responses (Blue Text)

Report & Site Visit:

- Appendix A Project Activity and Reporting History Table does not match the summary Table titled "Site Permitting/Monitoring Activity and Reporting History".
 Response: These tables have been updated to match.
- 2. Mature privet was observed along UT-5A, UT-5B, UT-4 and UT-6. Please continue treatment. Overall the site looks good.

Response: RS will continue to spot treat for privet throughout the project. It should be noted that the observed privet, though mature, is scattered in nature and does not pose a risk to planted vegetation. As such, RS feels it does not meet the requirements to be included on the CCPV or listed in Table 6, Item 4 - Invasive Areas of Concern.

Digital Review:

1. The digital data submission is missing summary tables 2, 15 and 16 included in the PDF report submission, please submit missing tables and photos if dedicated photo points other than veg plots and cross sections exist.

Response: A "Background Tables" folder was added to the digital submittal. This folder contains an excel file with Tables 1-4. Additionally, an excel file containing tables 15 and 16 has been added to the "Hydrologic Data" folder.

Heron Year 5, 2023 Monitoring Summary

General Notes

- No encroachment was identified in Year 5
- No evidence of nuisance animal activity (i.e., beaver, heavy deer browsing, etc.) was observed.

Streams

- Stream measurements were conducted on May 17, 2023, 37 cross sections were measured across the site and results indicate streams are functioning as designed.
- Multiple visual assessments throughout the year indicate that across the Site, all in-stream structures are intact and functioning as designed and that channel geometry compares favorably with the proposed conditions outlined in the Detailed Restoration Plan and as constructed. No stream areas of concern were identified during year 5 (2023) monitoring. Tables for year 5 (2023) data and annual quantitative assessments are included in Appendix D.
- Two bankfull events were documented during year 5 (2023) monitoring for a total of 10 bankfull events to-date during the monitoring period (Table 14, Appendix E).
- Channel formation was evident in all site tributaries during year 5 (2023). The UT1 streamflow gauge captured 237 days of consecutive flow. The UT2 and UT3 stream gauges captured 110 days and 73 days respectively. The UT5 upstream and downstream gauges captured 165 and 154 days respectively. UT6 exhibited 282 consecutive days of flow. The upstream and downstream gauges on UT7 captured 154 days and 141 days respectively, and the UT7 middle gauge captured 229 days of flow. The UT8 gauge captured 250 consecutive days of flow. Channel formation tables and graphs are in Appendix E.
- In accordance with the monitoring schedule, year 5 (2023) benthic macroinvertebrate sampling occurred on June 13, 2023. Stream conditions were dry during the benthic macroinvertebrate sampling. UT-1 recorded zero (0) EPT Taxa due to hydrology being isolated to pools. Samples were not collected for UT-5 due to the lack of water in the entire stream channel. See the table below for a summary of benthic macroinvertebrate results. Year 5 (2023) results and habitat forms are in Appendix F.

Sampling	Preconstruction		Year 3 (2021)		Year 5 (2023)*		Year 7 (2025)	
Station	# EPT Taxa	Biotic Index	# EPT Taxa	Biotic Index	# EPT Taxa	Biotic Index	# EPT Taxa	Biotic Index
UT-1	0	7.94	2	8.11	0	9.31		
UT-5	0	7.40	0	8.85	NA	NA		

Summary of Benthic Macroinvertebrate Data by Year

*Site streams were unusually dry during the year 5 (2023) sampling effort. The UT-1 sampling reach was dry except for pools, and the UT-5 benthic sampling reach was completely dry at the time of sampling. No samples were collected in UT-5.

Wetlands

• All six groundwater gauges met success for the Year 5 (2023) monitoring period. Wetland hydrology data and graphs are in Appendix E.

Vegetation

- Vegetation plot monitoring for monitoring year 5 (2023) was performed on September 20, 2023. Thirteen of the 14 vegetation plots were found to be meeting success criteria with an average stem density of 373 stems per acre. In addition, 6 temporary plots were surveyed for an average stem density of 513 stems per acre.
- Continued treatment of invasive species and other thick herbaceous vegetation is planned for the remainder of the projects life.

Year	Soil Temperatures/Date Bud Burst Documented	Monitoring Period Used for Determining Success	10 Percent of Monitoring Period
2019 (Year 1)	March 28, 2019*	March 28-October 22 (209 days)	21 days
2020 (Year 2)	March 2, 2020 [#]	March 2-October 22 (235 days)	23 days
2021 (Year 3)	March 1, 2021 [^]	March 1-October 22 (236 days)	24 days
2022 (Year 4)	March 1, 2022 [%]	March 1-October 22 (236 days)	24 days
2023 (Year 5)	March 1, 2023~	March 1-October 22 (236 Days)	24 days

Summary of Monitoring Period/Hydrology Success Criteria by Year

*Based on documented bud burst and soil temperature of 50.06°F on March 28, 2019.

[#]Based on bud burst documented March 2, 2020 and soil temperature of 46.82°F on March 1, 2020.

^Based on bud burst documented on March 1, 2021. The soil temperature logger was damaged and stopped recording February 16, 2021, however at the time of the failure, the soil temperature had dropped below 41°F just twice in 2021 (January 5th and 31st) and exceeded thereafter.

[%]Based on bud burst documented February 28, 2022 and soil temperature of 45.97°F on March 1, 2022.

~Based on bud burst documented February 28, 2023 and soil temperature of 55.16°F on February 8, 2023

Site Maintenance Report (2023)

Invasive Species Work	Maintenance work
05/16/2023 Nodding thistle, Privet, Multiflora Rose, Russian Olive (Scattered treatment sitewide)	6/19/2023 Fence repair, no encroachment documented
09/12/2023 Japanese Knotweed (UT8, see Figure 2D, Appendix B) Privet, Multiflora rose, Russian Olive (Scattered treatment sitewide)	7/26/2023 Fence repair, no encroachment documented

	-		1/11			a (a			
	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)								
Gauge	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)	Year 6 (2024)	Year 7 (2025)		
1	Yes/33 days (15.8%)	Yes/23 days (9.8%)	Yes /46 days (19.5%)	Yes /45 days (19.1%)	Yes/50 days (21.3%)				
2	Yes/26 days (12.4%)	Yes/27 days (11.5%)	Yes/47 days (19.9%)	Yes/66 days (28.1%)	Yes/73 days (31.1%)				
3	Yes/35 days (16.7%)	Yes/28 days (12.0%)	Yes/36 days (15.2%)	Yes/66 days (28.1%)	Yes/71 days (30.2%)				
4	Yes/69 days (33.0%)	Yes/51 days (21.8%)	Yes/60 days (25.4%)	Yes/56 days (23.8%)	Yes/96 days (40.9%)				
5	Yes/52 days (24.9%)	Yes/45 days (19.2%)	Yes/50 days (21.2%)	Yes/52 days (22.1%)	Yes/71 days (30.2%)				
6	Yes/54 days (25.8%)	Yes/46 days (19.7%)	Yes/52 days (22.0%)	No/13 days (5.5%)	Yes/92 days (39.1%)				

Groundwater Hydrology Data

Space left intentionally blank

Activity or Deliverable	Data Collection Complete	Completion or Delivery	
Technical Proposal (RFP No. 16-006990)	January 11, 2017	January 11, 2017	
Institution Date (NCDMS Contract No. 100014)		May 22, 2017	
404 Permit		October 10, 2018	
Mitigation Plan		July 2018	
Construction Plans		July 17, 2018	
Site Construction		November 27, 2018- February 11, 2019	
Planting		February 21, 2019	
As-built Baseline Stream Data Collection	February 25-26, 2019		
As-built Baseline Vegetation Data Collection	February 25, 2019		
As-built Baseline Monitoring (MY0)	February-March 2019	May 2019	
Monitoring Year 1 (2019) Stream Data Collection	August 13-14, 2019		
Monitoring Year 1 (2019) Vegetation Data Collection	September 30, 2019		
Monitoring Year 1 (MY1)	March-October 2019	November 2019	
Invasive Species Treatment - Privet, Rose, Tree-of- Heaven, Microstegium, Johnson Grass	NA	June 12, 2020	
Monitoring Year 2 (2020) Stream Data Collection	May 16-24, 2020		
Monitoring Year 2 (2020) Vegetation Data Collection	July 1-6, 2020		
Monitoring Year 2 (MY2)	March-October 2020	January 2021	
Supplemental Planting	NA	April 8, 2021	
Invasive Species Treatment - Johnson Grass, Privet, Tree-of-Heaven, Multi-flora Rose, Japanese Knotweed, Catttail and Fescue	NA	September 7 - October 7 2021	
Monitoring Year 3 (2021) Stream Data Collection	February 16, 2021		
Monitoring Year 3 (2021) Vegetation Data Collection	July - October, 2021		
Monitoring Year 3 (MY3)	January - October 2021	December 2021	
Invasive Species Treatment - Cattail, Privet, Johnson Grass, Multiflora Rose, Sweetgum, Tree-of-Heaven, Princess Tree	NA	June 15, 2022	
Invasive Species Treatment - Japanese Knotweed (UT8), Tree-of-Heaven, Privet, Multiflora rose	NA	August 29, 2022	
Monitoring Year 4 (2022) Stream Data Collection	NA		
Monitoring Year 4 (2022) Vegetation Data Collection	NA		
Monitoring Year 4 (MY4)	January - October 2022	February 2023	
Invasive Species Treatment - Nodding thistle, Privet, Multiflora Rose, Russian Olive		May 15, 2023	
Invasive Species Treatment - Japanese Knotweed (UT8), Privet, Multiflora rose, Russian Olive		September 12, 2023	
Monitoring Year 5 (2023) Stream Data Collection	May 17, 2023		
Monitoring Year 5 (2023) Vegetation Data Collection	September 20, 2023		
Monitoring Year 5 (MY5)	January - October 2023	January 2024	

FINAL MY5 (2023) MONITORING REPORT

HERON STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina Cape Fear River Basin Cataloging Unit 03030002

DMS Project ID No. 100014 Full Delivery Contract No. 7192 RFP No. 16-006990 USACE Action ID No. SAW-2017-01471 DWR Project No. 17-0920

Data Collection: January 2023 – October 2023 Submission: January 2024

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Mitigation Services

Prepared by:

And

Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Contact: Worth Creech 919-755-9490 (phone) 919-755-9492 (fax)

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603 Contact: Grant Lewis 919-215-1693 (phone)

TABLE OF CONTENTS

1.0	PROJEC	SUMMARY	1
	1.1	Project Goals & Objectives	1
	1.2	Project Background	
	1.3	Project Components and Structure	3
	1.4	Success Criteria	
2.0	ΜΕΤΗΟ	DS	5
	2.1	Monitoring	6
3.0	REFERE	NCES	9

APPENDICES

AFFENDICES
Appendix A. Background Tables
Table 1. Project Components and Mitigation Units
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Attributes
Appendix B. Visual Assessment Data
Figure 1. Project Location
Figure 2. Current Conditions Plan View
Tables 5A-5H. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Appendix C. Vegetation Data
Table 7. Planted Bare Root Woody
Vegetation Table 8. Total stems by Plot and
Species
Table 9. Temporary Vegetation Plot Data
Height Data
Appendix D. Stream Geomorphology Data
Tables 10A-G. Baseline Stream Data Summary
Tables 11A-G. MY5 Monitoring Data - Dimensional Morphology Summary
Tables 12A-G. MY5 Monitoring Data - Stream Reach Data Summary
Table 13A-G. 3 onitoring Data - Stream Reach Data Summary
Cross Section Report
Appendix E. Hydrology Data
Tables 13A-J. Channel Evidence
Stream Gauge Graphs
Table 14. Verification of Bankfull Events
Table 15. Groundwater Hydrology Data
Groundwater Gauge Graphs
Soil Temperature Graph
Figure E-1. 30-70 Percentile Graph for Rainfall
Appendix F. Benthic Data
Benthic Results
Habitat Form

Appendix G. Site Photo Log

1.0 PROJECT SUMMARY

Restoration Systems, LLC has established the North Carolina Division of Mitigation Services (NCDMS) Heron Stream and Wetland Restoration Site (Site).

1.1 Project Goals & Objectives

Project goals were based on the *Cape Fear River Basin Restoration Priorities* (RBRP) report (NCEEP 2009) and on-site preconstruction data collection of channel morphology and function observed during field investigations. The Site is located within Targeted Local Watershed (TLW) 03030002050050. The RBRP report documents benthic ratings vary between "Fair" and "Good-Fair" possibly due to cattle, dairy, and poultry operations. The project is not located in a Regional or Local Watershed Planning Area; however, RBRP goals addressed by project activities are as follows with Site specific information following the RBRP goals in parenthesis.

- 1. Reduce and control sediment inputs (sediment input reduction of 67.3 tons/year);
- 2. Reduce and manage nutrient inputs (livestock removed from streams, elimination of fertilizer application, installation of marsh treatment areas; and a direct reduction of 893.2 pounds of nitrogen and 47.0 pounds of phosphorus per year);

Site specific mitigation goals and objectives were developed through the use of North Carolina Stream Assessment Method (NC SAM) and North Carolina Wetland Assessment Method (NC WAM) analyses of preconstruction and reference stream systems at the Site (NC SFAT 2015 and NC WFAT 2010) (see Table 1).

Space left intentionally blank

Stream/Wetland Targeted Functions, Goals, and Objectives

Targeted Functions	Goals	Objectives	Compatibility of Success Criteria	
(1) HYDROLOGY	L			
(2) Flood Flow (Floodplain Access)				
(3) Streamside Area	 Attenuate flood flow across the 	 Construct new channel at historic 	• BHR not to exceed 1.2	
Attenuation	Site.	floodplain elevation to restore	 Document four overbank 	
(4) Floodplain Access	Minimize	overbank flows and restore	events in separate	
(4) Wooded Riparian Buffer (4) Microtopography	 downstream flooding to the maximum extent possible. Connect streams to functioning wetland systems. 	 jurisdictional wetlands Plant woody riparian buffer Remove livestock Deep rip floodplain soils to reduce compaction and increase soil surface roughness Protect riparian buffers with a perpetual conservation easement 	 monitoring years Livestock excluded from the easement Attain Wetland Hydrology Success Criteria Attain Vegetation Success Criteria Conservation Easement recorded 	
(3) Stream Stability	_		 Cross-section measurements indicate a 	
(4) Channel Stability (4) Sediment Transport	 Increase stream stability within the Site so that channels are neither aggrading nor degrading. 	 Construct channels with proper pattern, dimension, and longitudinal profile Remove livestock Construct stable channels with cobble/gravel substrate Plant woody riparian buffer 	 stable channel with cobble/gravel substrate Visual documentation of stable channels and structures BHR not to exceed 1.2 ER of 1.4 or greater < 10% change in BHR and ER in any given year Livestock excluded from the easement Attain Vegetation Success Criteria 	
(1) WATER QUALITY				
(2) Streamside Area Vegetation	-	Remove livestock and reduce		
(3) Upland Pollutant Filtration		agricultural land/inputsInstall marsh treatment areas		
(3) Thermoregulation	Remove direct	 Install marsh treatment areas Plant woody riparian buffer 		
(2) Indicators of Stressors	nutrient and	Restore/enhance jurisdictional	• Livestock excluded from the	
Wetland Particulate Change Wetland Physical Change	pollutant inputs from the Site and reduce contributions to downstream waters.	 wetlands adjacent to Site streams Provide surface roughness through deep ripping/plowing Restore overbank flooding by establishing proper channel dynamics Cessation of municipal land application 	easement • Attain Wetland Hydrology Success Criteria • Attain Vegetation Success Criteria	

	cied l'unctions, doai	s, and Objectives (continued)		
(1) HABITAT				
(2) In-stream Habitat		Construct stable channels with	Cross-section measurement	
(3) Substrate		cobble/gravel substrate	indicate a stable channel with	
(3) Stream Stability		 Plant woody riparian buffer to 	cobble/gravel substrate	
(3) In-Stream Habitat		provide organic matter and shade	 Visual documentation of 	
(2) Stream-side Habitat	Improve	Construct new channel at historic	stable channels and in-stream	
(3) Stream-side Habitat	instream and stream-side	floodplain elevation to restore overbank flows and plant woody	structures.Attain Wetland Hydrology	
(3) Thermoregulation	habitat.	riparian buffer	Success Criteria	
Wetland Landscape Patch		Protect riparian buffers with a	Attain Vegetation Success	
Structure		perpetual conservation easement	Criteria	
Wetland Vegetation		Restore/enhance jurisdictional	Conservation Easement	
Composition		wetlands adjacent to Site streams	recorded	

Stream/Wetland Targeted Functions, Goals, and Objectives (Continued)

1.2 Project Background

The Heron Stream and Wetland Mitigation Site (hereafter referred to as the "Site") encompasses a 17.64acre easement along warm water, unnamed tributaries to Pine Hill Branch and unnamed tributaries to South Fork Cane Creek. The Site is located approximately 4 miles southeast of Snow Camp and 4.5 miles north of Silk Hope in southern Alamance County near the Chatham County line (Figure 1, Appendix A).

Prior to construction, Site land use consisted of disturbed forest and agricultural land used for livestock grazing and hay production. Livestock had unrestricted access to Site streams, which had been cleared, dredged of cobble substrate, straightened, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from stream banks and adjacent pastures. Approximately 62 percent of the stream channel had been degraded contributing to sediment export from the Site resulting from mechanical processes such as livestock hoof shear. In addition, streamside wetlands were cleared and drained by channel downcutting and land uses. Preconstruction Site conditions resulted in degraded water quality, a loss of aquatic habitat, reduced nutrient and sediment retention, and unstable channel characteristics (loss of horizontal flow vectors that maintain pools and an increase in erosive forces to channel bed and banks). Site restoration activities restored riffle-pool morphology, aided in energy dissipation, increased aquatic habitat, stabilized channel banks, and greatly reduced sediment loss from channel banks.

1.3 Project Components and Structure

Proposed Site restoration activities generated 5293 Stream Mitigation Units (SMUs) and 0.66 Wetland Mitigation Units (WMUs) as the result of the following.

- 4068 linear feet of Priority I stream restoration
- 1184 linear feet of stream enhancement (Level I)
- 1090 linear feet of stream enhancement (Level II)
- 0.35 acre of riparian wetland restoration
- 0.61 acre of riparian wetland enhancement

Additional activities that occurred at the Site included the following.

- Installation of six marsh treatment areas throughout the Site.
- Fencing the entire conservation easement by leaving some pre-existing fencing, removing fencing, and installing additional fencing.
- Planting 12.05 acres of the Site with 15,625 stems (planted species and densities by zone are included in Table 7 [Appendix C]).

Deviations from the construction plans included realignment of UT 1B (adding 20 linear feet to the alignment) due to conflicts with a gas line crossing. The realignment resulted in the reduction of a log vane and alterations to pipe configurations within the crossing. Gas line realignment also affected the length of UT 2 in its lower reaches (shortening the Restoration reach). UT 2 also has minor deviations in the enhancement II reach due to profile elevation alterations to tie to the invert of UT 1B. These profile alterations were included in construction plans, but not included in table updates of the detailed plan. Profile alterations resulted in the Enhancement (level II)/Restoration initiation point migrating upstream, and thus the length of the Enhancement (Level II) reach (UT 2A) decreased by 39 feet, and the length of the restoration reach (UT 2B) increased by 17 feet.

Minor easement deviations after construction plan development resulted in some stationing changes, most notable at the upper reaches of UT 1A (adding 5 linear feet to the alignment) and UT 8A & UT 8B (reducing the alignments by a total of 4 linear feet). The easement variations also affected channel lengths across gas lines, which do not generate mitigation credit. Eight log cross-vanes were not constructed due to contact with bed rock, or conflicts with the gas line. In addition, a marsh treatment area was added to the right bank of UT 6 at a draw that was concentrating surface drainage and scouring the valley walls. No other deviations of significance occurred between construction plans and the as-built condition. In addition, no issues have arisen since construction occurred.

Site design was completed in July 2018. Construction started on November 27, 2018 and ended within a final walkthrough on February 11, 2019. The Site was planted on February 21, 2019. Completed project activities, reporting history, completion dates, project contacts, and background information are summarized in Tables 1-4 (Appendix A).

1.4 Success Criteria

Project success criteria have been established per the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring and success criteria relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving success criteria. The following table summarizes Site success criteria.

Success Criteria

Streams

- All streams must maintain an Ordinary High-Water Mark (OHWM), per RGL 05-05.
- Continuous surface flow must be documented each year for at least 30 consecutive days. Surface water monitoring gauges will be installed in the upper third of all intermittent channels, unless otherwise requested by the IRT.
- Bank height ratio (BHR) cannot exceed 1.2 at any measured cross-section.
- Entrenchment ratio (ER) must be no less than 2.2 for E- and C-type channels at any measured riffle cross-section. Note: B-type channels may have an ER less than 1.4.
- BHR and ER at any measure riffle cross-section should not change by more than 10% from baseline condition during any given monitoring period.
- The stream project shall remain stable and all other performance standards shall be met through four separate bankfull events, occurring in separate years, during the monitoring years 1-7.

Wetland Hydrology

• Saturation or inundation within the upper 12 inches of the soil surface for, at a minimum, 10 percent of the growing season, during average climatic conditions. Note: Soil temperature for growing season establishment will be measured daily utilizing a continuous monitoring soil probe. Soil temperature will be measured from mid-February through the end of April (at a minimum).

Vegetation

- Within planted portions of the site, a minimum of 320 stems per acre must be present at year 3; a minimum of 260 stems per acre must be present at year 5; and a minimum of 210 stems per acre must be present at year 7.
- Trees must average 7 feet in height at year 5, and 10 feet in height at year 7 in each plot.
- Planted and volunteer stems are counted, provided they are included in the approved planting list for the site; natural recruits not on the planting list may be considered by the IRT on a case-by-case basis.

2.0 METHODS

Monitoring requirements and success criteria outlined in this plan follow the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected. The monitoring schedule is summarized in the following table.

Resource	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Streams	Х	Х	Х		Х		Х
Wetlands	Х	Х	Х	Х	Х	Х	Х
Vegetation	Х	Х	Х		Х		Х
Macroinvertebrates			Х		Х		Х
Visual Assessment	Х	Х	Х	Х	Х	Х	Х
Report Submittal	Х	Х	Х	Х	Х	Х	Х

Monitoring Schedule

2.1 Monitoring

The monitoring parameters are summarized in the following table.

Monitoring Summary

Stream Parameters									
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported					
Stream Profile	Full longitudinal survey	As-built (unless otherwise required)	All restored stream channels	Graphic and tabular data.					
Stream Dimension	Cross-sections	Years 1, 2, 3, 5, and 7	Total of 37 cross- sections on restored channels	Graphic and tabular data.					
Channel Stability	Visual Assessments	Yearly	All restored stream channels	Areas of concern to be depicted on a plan view figure with a written assessment and photograph of the area included in the report.					
	Additional Cross- sections	Yearly	Only if instability is documented during monitoring	Graphic and tabular data.					
Stream Hydrology	Continuous monitoring surface water gauges and/or trail camera	Total of 10 surface		Surface water data for each monitoring period as depicted in Figures 10A-10D.					
Bankfull Events	Continuous monitoring surface water gauges and/or trail camera	Continuous recording through monitoring period	Total of 10 surface water gauges: One gauge on UT1, 2, 3, 6 and 8. Two gauges on UT 5. Three gauges on UT 7	Surface water data for each monitoring period					
	Visual/Physical Evidence	Continuous through monitoring period	All restored stream channels	Visual evidence, photo documentation, and/or rain data.					
Benthic Macroinvertebrates Benthic Macroinvertebrates Benthic Macroinvertebrates Benthic Macroinvertebrates, Version 5.0 (NCDWR 2016)		Pre-construction, Years 3, 5, and 7 during the "index period" referenced in Small Streams Biocriteria Development (NCDWQ 2009)	2 stations (one at the lower end of UT1 and one at the lower end of UT5)	Results* will be presented on a site- by-site basis and to include a list of taxa collected, an enumeration of <i>Ephemeroptera</i> , <i>Plecoptera</i> , and <i>Trichoptera</i> taxa as well as Biotic Index.					
	Wetland Parameters								
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported					
Wetland Restoration	Groundwater gauges	As-built, Years 1, 2, 3, 4, 5, 6, and 7 throughout the year with the growing season defined as March 1-October 22	6 gauges spread throughout restored wetlands	Soil temperature at the beginning of each monitoring period to verify the start of the growing season, groundwater and rain data for each monitoring period					

Monitoring Summary (Continued)

Vegetation Parameters								
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported				
Vegetation establishment and vigor	Permanent vegetation plots 0.0247 acre (100 square meters) in size; CVS-EEP Protocol for Recording Vegetation, Version 4.2 (Lee et al. 2008)	As-built, Years 1, 2, 3, 5, and 7	14 plots spread across the Site	Species, height, planted vs. volunteer, stems/acre				
	Annual random vegetation plots, 0.0247 acre (100 square meters) in size	As-built, Years 1, 2, 3, 5, and 7	4 plots randomly selected each year	Species and height				

*Benthic Macroinvertebrate sampling data will not be tied to success criteria; however, the data may be used as a tool to observe positive gains to in-stream habitat

Stream Summary

Stream measurements for monitoring year 5 (2023) were performed on May 17, 2023. A visual assessment indicates that across the Site, all in-stream structures are intact and functioning as designed and that channel geometry compares favorably with the proposed conditions outlined in the Detailed Restoration Plan and as constructed. No stream areas of concern were identified during year 5 (2023) monitoring. Tables for year 5 (2023) stream measurement data and annual quantitative assessments are included in Appendix C.

Two bankfull events were documented during year 5 (2023) monitoring for a total of 10 bankfull events to-date during the monitoring period (Table 14, Appendix E).

Channel formation was evident in all site tributaries during year 5 (2023). The UT1 streamflow gauge captured 237 days of consecutive flow. The UT2 and UT3 stream gauges captured 110 days and 73 days respectively. The UT5 upstream and downstream gauges captured 165 and 154 days respectively. UT6 exhibited 282 consecutive days of flow. The upstream and downstream gauges on UT7 captured 154 days and 141 days respectively, and the UT7 middle gauge captured 229 days of flow. The UT8 gauge captured 250 consecutive days of flow. Channel formation tables and graphs are in Appendix E.

In accordance with the monitoring schedule, year 5 (2023) benthic macroinvertebrate sampling occurred on June 13, 2023. Stream conditions were dry during the benthic macroinvertebrate sampling. UT-1 recorded zero (0) EPT Taxa due to hydrology being isolated to pools. Samples were not taken for UT-5 due to the lack of water in the entire stream channel. See the table below for a summary of benthic macroinvertebrate results. Year 5 (2023) results and habitat forms are in Appendix F.

	•		•								
	Sampling Station	Preconstruction		Year 3 (2021)		Year 5	(2023)*	Year 7 (2025)			
		# EPT	Biotic	# EPT	Biotic	# EPT	Biotic	# EPT	Biotic		
		Таха	Index	Таха	Index	Таха	Index	Таха	Index		
	UT-1	0	7.94	2	8.11	0	9.31				
	UT-5	0	7.40	0	8.85	NA	NA				

Summary of Benthic Macroinvertebrate Data by Year

*Site streams were unusually dry during the year 5 (2023) sampling effort. The UT-1 sampling reach was dry except for pools, and the UT-5 benthic sampling reach was completely dry at the time of sampling. No samples were collected in UT-5.

Wetland Summary

Summary of Monitoring Period/Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud Burst Documented	Monitoring Period Used for Determining Success	10 Percent of Monitoring Period
2019 (Year 1)	March 28, 2019*	March 28-October 22 (209 days)	21 days
2020 (Year 2)	March 2, 2020 [#]	March 2-October 22 (234 days)	23 days
2021 (Year 3)	March 1, 2021 [^]	March 1-October 22 (236 days)	24 days
2022 (Year 4)	March 1, 2022 [%]	March 1-October 22 (236 days)	24 days
2023 (Year 5)	March 1, 2023~	March 1-October 23 (236 days)	24 days

*Based on documented bud burst and soil temperature of 50.06°F on March 28, 2019.

[#]Based on bud burst documented March 2, 2020 and soil temperature of 46.82°F on March 1, 2020.

^ABased on bud burst documented on March 1, 2021. The soil temperature logger was damaged and stopped recording February 16, 2021, however at the time of the failure, the soil temperature had dropped below 41°F just twice in 2021 (January 5th and 31st) and exceeded thereafter.

[%]Based on bud burst documented February 28, 2022 and soil temperature of 45.97°F on March 1, 2022.

~Based on bud burst documented February 28, 2023 and soil temperature of 55.16°F on March 1, 2023.

All six groundwater gauges met success for the Year 5 (2023) monitoring period. Wetland hydrology data and graphs are in Appendix E.

Vegetation Summary

Vegetation plot monitoring for monitoring year 5 (2023) was performed on September 20, 2023. Thirteen of the 14 vegetation plots were found to be meeting success criteria with an average stem density of 373 planted stems per acre. In addition, 6 temporary plots were surveyed for an average stem density of 513 stems per acre.

Supplemental planting of 3.87 acres was conducted in 2021 in previously identified areas of poor growth rates or vigor using 1,290 plants to improve the Site's overall stem density. These areas are identified on Figures 2A, 2B, and 2C (Appendix B) and are outside vegetation plots. Planting occurred at a rate of approximately 330 bare root stems per acre of the following species: river birch (*Betula nigra*), green ash

(Fraxinus pennsylvanica), tulip poplar (Liriodendron tulipifera), red bud (Cercis canadensis), sycamore (Platanus occidentalis), white oak (Quercus alba), water oak (Quercus nigra), willow oak (Quercus phellos), and red oak (Quercus rubra).

3.0 REFERENCES

- Griffith, G.E., J.M. Omernik, J.A. Comstock, M.P. Schafale, W.H. McNab, D.R. Lenat, T.F. MacPherson, J.B. Glover, and V.B. Shelbourne. 2002. Ecoregions of North Carolina and South Carolina. U.S. Geological Survey, Reston, Virginia.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS). 2014. Stream and Wetland Mitigation Monitoring Guidelines. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2005. Cape Fear River Basinwide Water Quality Plan. Available: https:// https://deq.nc.gov/about/divisions/water-resources/planning/basinplanning/water-resource-plans/cape-fear-2005 [December 8, 2016]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.
- North Carolina Division of Water Resources (NCDWR). 2016. Standard Operating Procedures for Collection and Analysis of Benthic Macroinvertebrates (Version 5.0). (online). Available: <u>https://files.nc.gov/ncdeq/Water%20Quality/Environmental%20Sciences/BAU/NCDWRMacroin</u> <u>vertebrate-SOP-February%202016 final.pdf</u>
- North Carolina Division of Water Quality (NCDWQ). 2009. Small Streams Biocriteria Development. Available: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=2d54ad23-0345-4d6e-82fd-04005f48eaa7&groupId=38364</u>
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Cape Fear River Basin Restoration Priorities 2009 (online). Available: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=864e82e8-725c-415e-8ed9-</u> <u>c72dfcb55012&groupId=60329</u>
- North Carolina Stream Functional Assessment Team. (NC SFAT 2015). N.C. Stream Assessment Method (NC SAM) User Manual. Version 2.1.
- North Carolina Wetland Functional Assessment Team. (NC WFAT 2010). N.C. Wetland Assessment Method (NC WAM) User Manual. Version 4.1.
- Simon A, Hupp CR. 1986. Geomorphic and Vegetative Recovery Processes Along Modified Tennessee Streams: An Interdisciplinary Approach to Disturbed Fluvial Systems. Forest Hydrology and Watershed Management. IAHS-AISH Publ.167.

- United States Department of Agriculture (USDA). 2016. Web Soil Survey (online). Available: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx [August 2016].
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.

Appendix A Background Tables

Table 1. Project Components and Mitigation UnitsTable 2. Project Activity and Reporting HistoryTable 3. Project Contacts TableTable 4. Project Attributes Table

Reach ID	Stream Stationing/ Wetland Type	Existing Footage/ Acreage	Mitigation Plan Footage/ Acreage	Restoration Footage/ Acreage	Restoration Level	Restoration or Restoration Equivalent	Mitigation Ratio	Mitigation Credits	Comment
UT 1A	(-)0+05 to 04+70	475	470	475	Enhancement (Level I)	475	1.5:1	317	
UT 1B	04+70 to 13+26	753	836	856	Restoration	856-57= 799	1:1	799	57 If of UT1 is located outside of the conservation easement and therefore is not generating credit
UT 2A	00+00 to 03+04	304	343	304	Enhancement (Level II)	304	2.5:1	122	
UT 2B	03+04 to 03+67	19	46	63	Restoration	63	1:1	63	
UT 3	00+00 to 02+79	269	279	279	Restoration	279	1:1	279	
UT 4	00+00 to 04+50	485	450	450	Restoration	450	1:1	450	
UT 5A	00+00 to 09+52	422	952	952	Restoration	952-52= 900	1:1	900	52 If of UT5 is located outside of the conservation easement and therefore is not generating credit
UT 5B	09+52 to 14+90	538	538	538	Enhancement (Level II)	538	2.5:1	215	
UT 6	00+00 to 07+81	683	781	781	Restoration	781	1:1	781	
UT 7A	00+00 to 02+32	0	232	232	Restoration	232-41= 191	1:1	191	41 If of the UT7 restoration reach is located outside of the conservation easement and therefore is not generating credit
UT 7B	02+32 to 09+96	764	764	764	Enhancement (Level I)	764-55= 709	1.5:1	473	55 If of the UT7 enhancement reach is located outside of the conservation easement and therefore is not generating credit
UT8A	00+04 to 06+09	549	607	605	Restoration	605	1:1	605	
UT 8B	06+09 to 08+57	248	250	248	Enhancement (Level II)	248	2.5:1	99	
Wetland R	Riparian Riverine		0.35	0.35	Restoration	0.35	1:1	0.35	Wetland Restoration
Wetland E	Riparian Riverine	0.61	0.61	0.61	Enhancement	0.61	2:1	0.31	Wetland Enhancement

Table 1. Project Components and Mitigation Credits: Heron Site

• •	•							
Length & Area Summations by Mitigation Category								
Restoration Level Stream (linear footage) Riparian Wetland (acreage								
Restoration	4068*	0.35						
Enhancement (Level I)	1184**							
Enhancement (Level II)	1090							
Enhancement		0.61						

Table 1. Project Components and Mitigation Credits: Heron Site (continued)

*An additional 150 linear feet of stream restoration is located outside of the conservation easement and is therefore not included in this total or in mitigation credit calculations.

**An additional 55 linear feet of stream enhancement (level I) is located outside of the conservation easement and is therefore not included in this total or in mitigation credit calculations.

Overall Assets Summary						
Asset Category	Overall Credits					
Stream	5293.334					
Riparian Riverine Wetland	0.655					

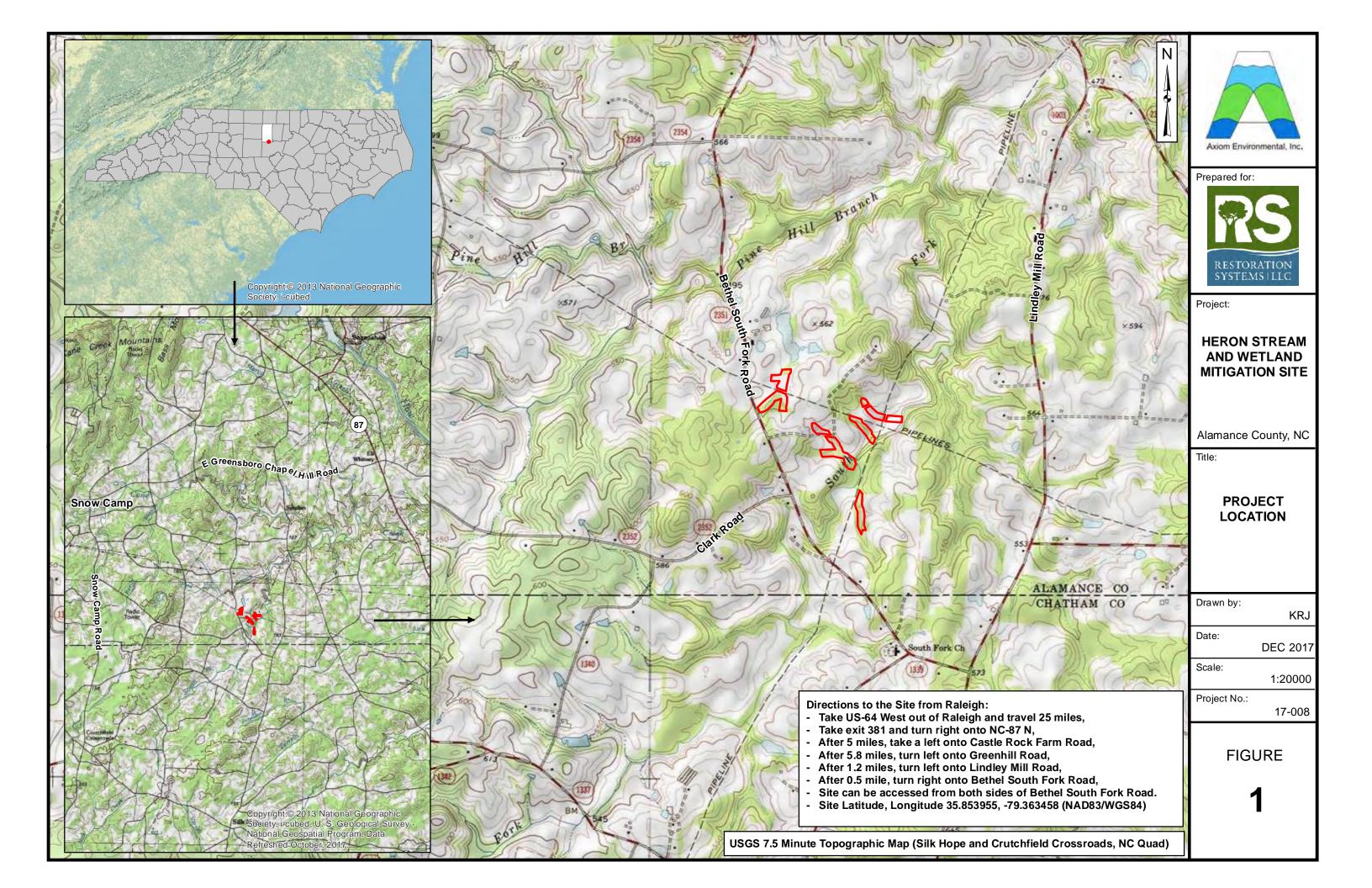
Activity or Deliverable	Data Collection	Completion or Delivery		
-	Complete			
Technical Proposal (RFP No. 16-006990)	January 11, 2017	January 11, 2017		
Institution Date (NCDMS Contract No. 100014)		May 22, 2017		
404 Permit		October 10, 2018		
Mitigation Plan		July 2018		
Construction Plans		July 17, 2018		
Site Construction		November 27, 2018- February 11, 2019		
Planting		February 21, 2019		
As-built Baseline Stream Data Collection	February 25-26, 2019			
As-built Baseline Vegetation Data Collection	February 25, 2019			
As-built Baseline Monitoring (MY0)	February-March 2019	May 2019		
Monitoring Year 1 (2019) Stream Data Collection	August 13-14, 2019			
Monitoring Year 1 (2019) Vegetation Data Collection	September 30, 2019			
Monitoring Year 1 (MY1)	March-October 2019	November 2019		
Invasive Species Treatment - Privet, Rose, Tree-of- Heaven, Microstegium, Johnson Grass	NA	June 12, 2020		
Monitoring Year 2 (2020) Stream Data Collection	May 16-24, 2020			
Monitoring Year 2 (2020) Vegetation Data Collection	July 1-6, 2020			
Monitoring Year 2 (MY2)	March-October 2020	January 2021		
Supplemental Planting	NA	April 8, 2021		
Invasive Species Treatment - Johnson Grass, Privet, Tree-of-Heaven, Multi-flora Rose, Japanese Knotweed, Catttail and Fescue	NA	September 7 - October 7, 2021		
Monitoring Year 3 (2021) Stream Data Collection	February 16, 2021			
Monitoring Year 3 (2021) Vegetation Data Collection	July - October, 2021			
Monitoring Year 3 (MY3)	January - October 2021	December 2021		
Invasive Species Treatment - Cattail, Privet, Johnson Grass, Multiflora Rose, Sweetgum, Tree-of-Heaven, Princess Tree	NA	June 15, 2022		
Invasive Species Treatment - Japanese Knotweed (UT8), Tree-of-Heaven, Privet, Multiflora rose	NA	August 29, 2022		
Monitoring Year 4 (2022) Stream Data Collection	NA			
Monitoring Year 4 (2022) Vegetation Data Collection	NA			
Monitoring Year 4 (MY4)	January - October 2022	February 2023		
Invasive Species Treatment - Nodding thistle, Privet, Multiflora Rose, Russian Olive		May 15, 2023		
Invasive Species Treatment - Japanese Knotweed (UT8), Privet, Multiflora rose, Russian Olive		September 12, 2023		
Monitoring Year 5 (2023) Stream Data Collection	May 17, 2023			
Monitoring Year 5 (2023) Vegetation Data Collection	September 20, 2023			
Monitoring Year 5 (MY5)	January - October 2023	January 2024		

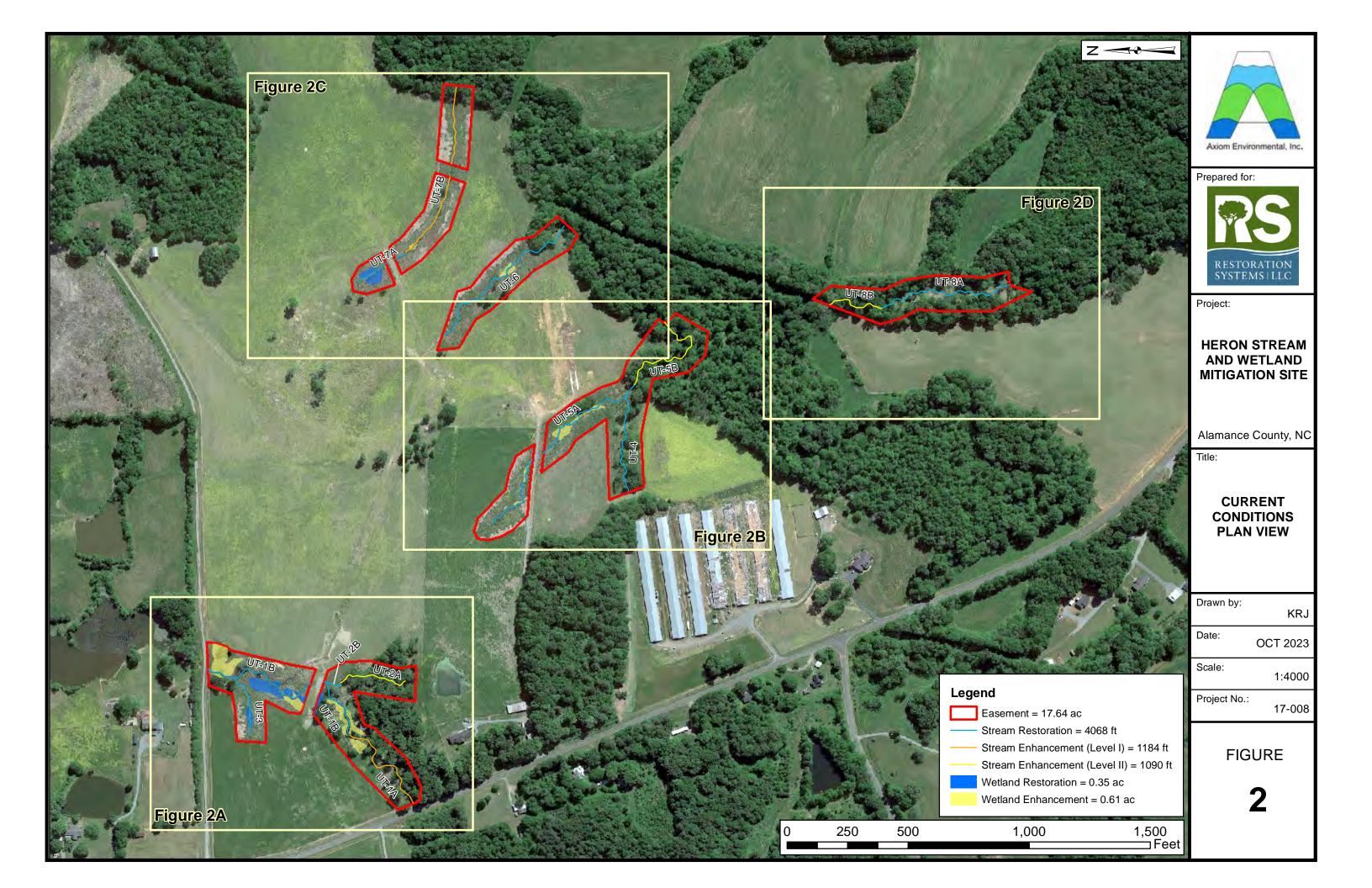
Table 2. Project Activity and Reporting History: Heron Site

Table 3.	Project Contacts Table: Heron Site
----------	------------------------------------

Full Delivery Provider	Construction Contractor
Restoration Systems	Land Mechanic Designs
1101 Haynes Street, Suite 211	780 Landmark Road
Raleigh, North Carolina 27604	Willow Spring, NC 27592
Worth Creech 919-755-9490	Lloyd Glover 919-639-6132
Designer	Planting Contractor
Axiom Environmental, Inc.	Carolina Silvics, Inc.
218 Snow Avenue	908 Indian Trail Road
Raleigh, NC 27603	Edenton, NC 27932
Grant Lewis 919-215-1693	Mary-Margaret McKinney 252-482-8491
Construction Plans and Sediment and	As-built Surveyor
Erosion Control Plans	K2 Design Group
Sungate Design Group, PA	5688 US Highway 70 East
915 Jones Franklin Road	Goldsboro, NC 27534
Raleigh, NC 27606	John Rudolph 919-751-0075
Joshua G. Dalton, PE 919-859-2243	
	Baseline & Monitoring Data Collection
	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Table 4. Project Attribute Table: Heron Site


Project Information						
Project Name	Heron Stream and Wetland Mitigation Site					
Project County	Alamance County, North Carolina					
Project Area (acres)	17.64					
Project Coordinates (latitude & latitude)	35.853955⁰N, -79.363458⁰W					
Planted Area (acres)	12.05					
Project Watershed Summary Information						
Physiographic Province	Piedmont					
Project River Basin	Cape Fear					
USGS HUC for Project (14-digit)	03030002050050					
NCDWR Sub-basin for Project	03-06-04					
Project Drainage Area (acres)	14 to 96					
Percentage of Project Drainage Area that is Impervious	<2%					
CGIA Land Use Classification	Managed Herbaceous Cover & Mixed Upland Hardwoods					


Table 4. Project Attribute Table: Heron Site (Continued)

		Reach Summa	ry Information	ı				
Parameters	UT1	UT2	UT 3	UT4	UT 5	UT6	UT 7	UT 8
Length of reach (linear feet)	1155	363	269	485	907	683	202	1221
Valley Classification & Confinement				Alluvial,	confined			
Drainage Area (acres)	96.4	7.1	11.7	17.2	38.1	14.1	20.9	30.8
NCDWR Stream ID Score	30.5	22.5	28.5	33.5	27.5	23.5	24.5	27.5
Perennial, Intermittent, Ephemeral	Perennial	Intermittent	Perennial/ Intermittent	Perennial	Perennial/ Intermittent	Perennial/ Intermittent	Intermittent	Perennial
NCDWR Water Quality Classification	WS-V, NSW							
Existing Morphological Description (Rosgen 1996)	Cg5	Gf5	Cg5	Eg5	Eg5	Cg5	Cg5	Eg5
Proposed Stream Classification (Rosgen 1996)	C/E 4	Gf 5	C/E 4	C/E 4	C/E 4	C/E 4	Eb4	C/E 4
Existing Evolutionary Stage (Simon and Hupp 1986)	III/IV	I/III/IV	III/IV	11/111	/	III/IV	III/IV	11/111
Underlying Mapped Soils	Alaman	ce silt loam, Ge	•	-	slaty silt loam, n, Local Alluvia		loam, Orange s	ilt loam,
Drainage Class	Well-d	rained, well-dr	ained, well-dra	ined, well-dra	ained, well drai	ned, poorly-dr	ained, poorly-o	drained
Hydric Soil Status		Nonhydric, n	onhydric, nonh	ydric, nonhyd	dric, nonhydric,	hydric, hydric	, respectively	
Valley Slope	0.0074	0.0270	0.0222	0.0244	0.0358	0.0300	0.0255	0.0218
FEMA Classification				Ν	IA			
Native Vegetation Community			Piedmont Allu	uvial Forest/D	ry-Mesic Oak-H	lickory Forest		
Watershed Land Use/Land Cover (Site)		43% forest,	55% agricultura	al land, <2% lo	w density resid	dential/imperv	ious surface	
Watershed Land Use/Land Cover (Cedarock Reference Channel)		65% forest,	30% agricultur	al land, <5% lo	ow density resi	dential/imperv	vious surface	
Percent Composition of Exotic Invasive Vegetation				<	5%			

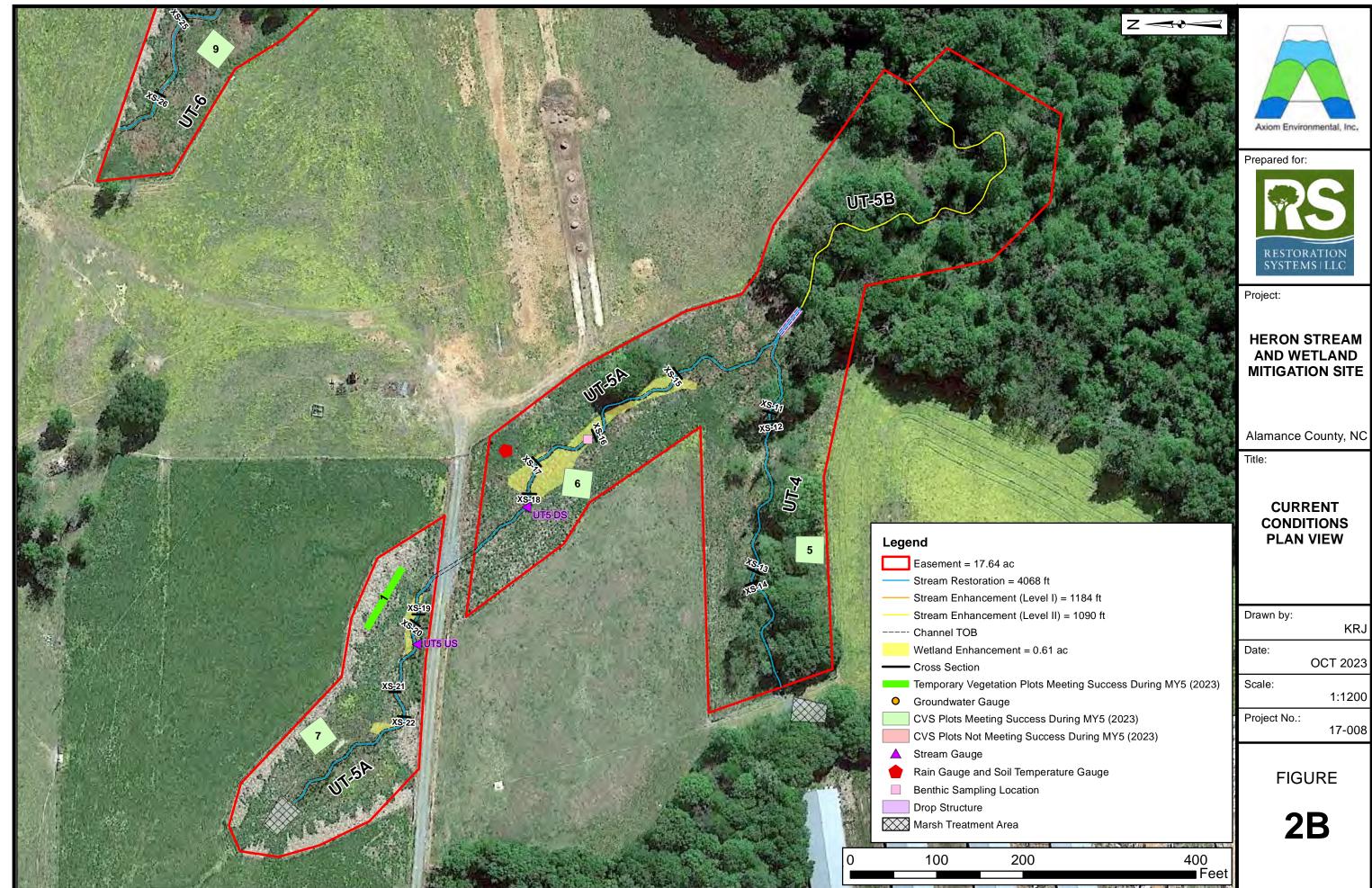
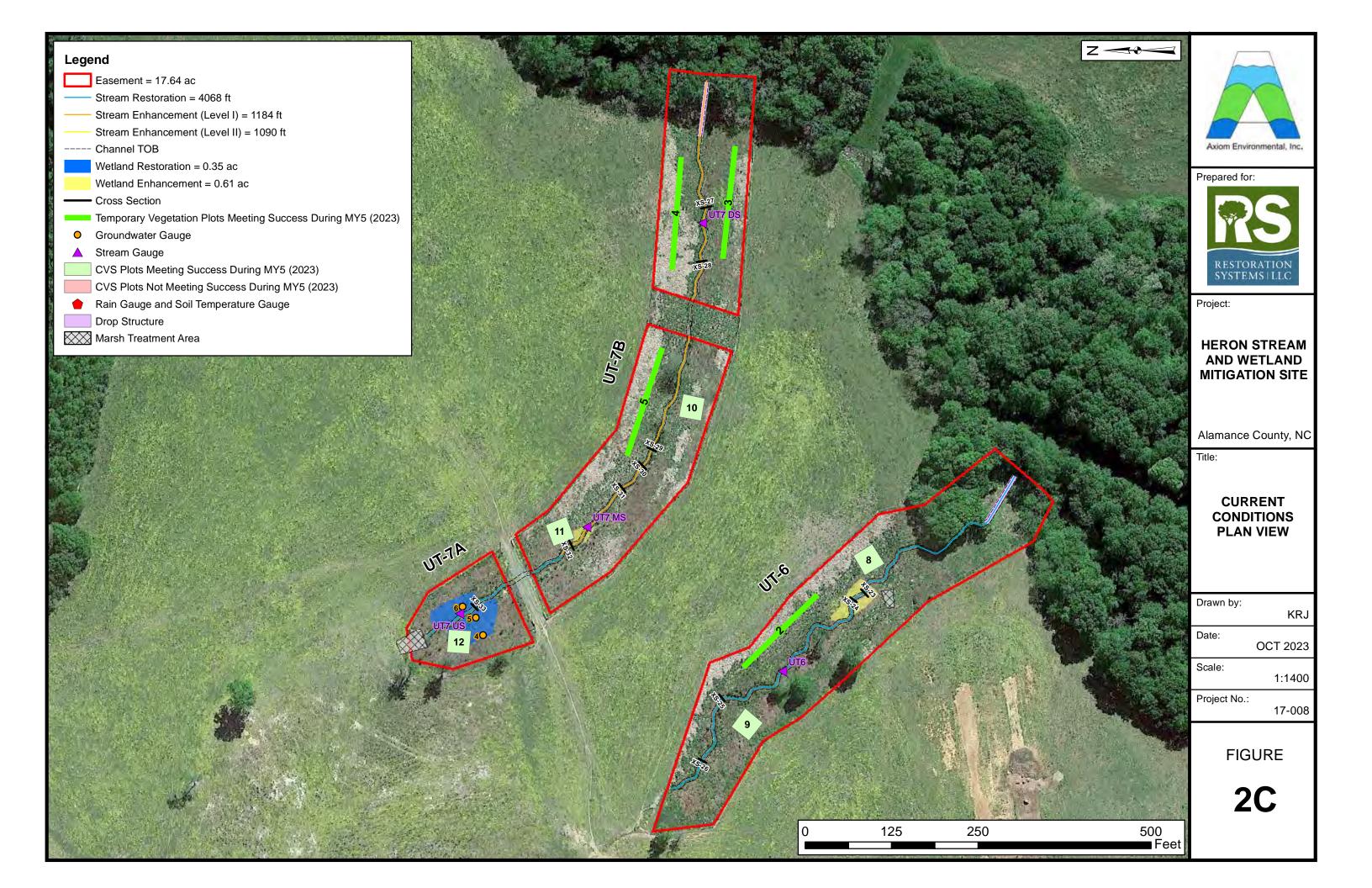
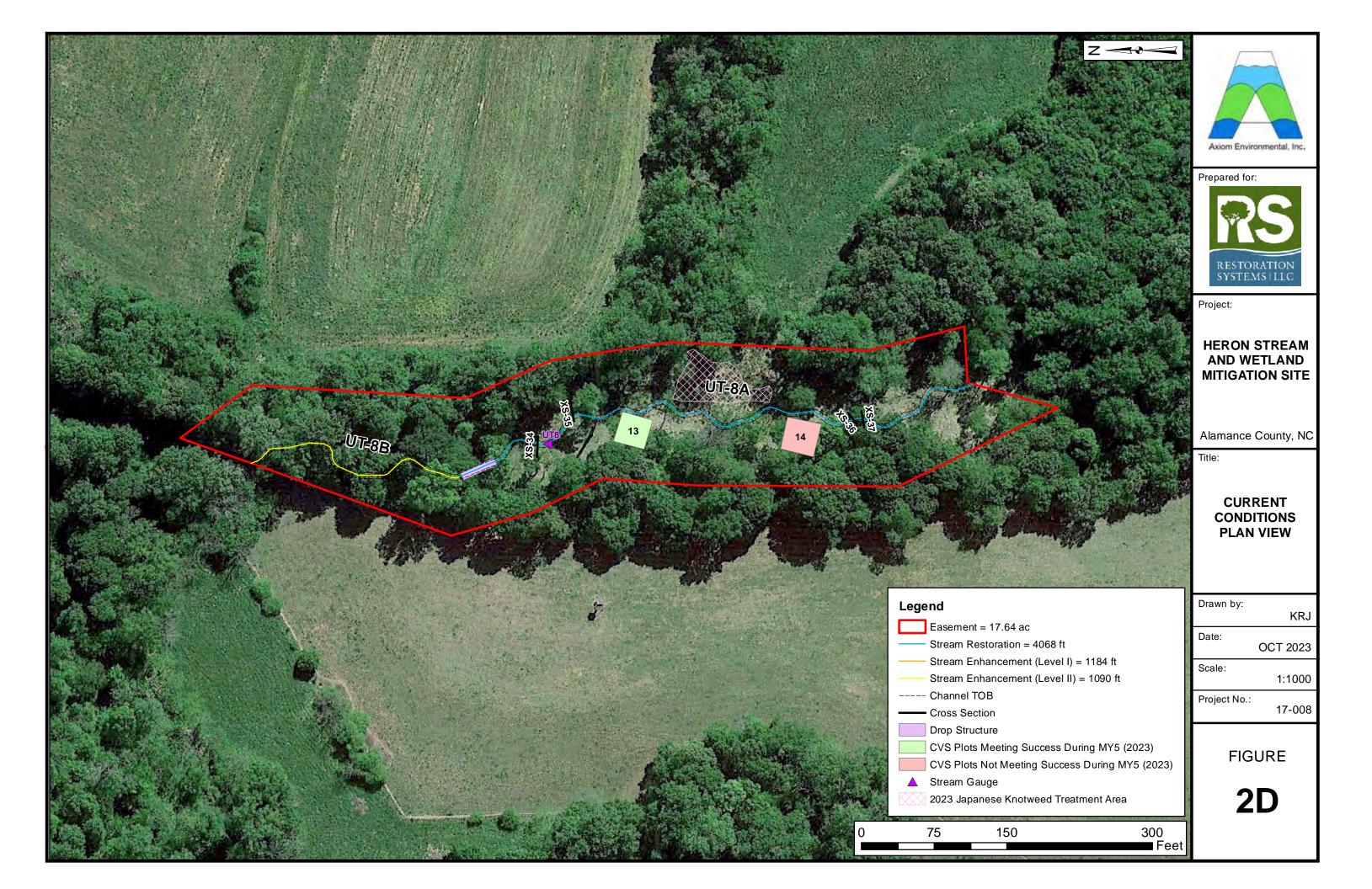

Appendix B Visual Assessment Data

Figure 1. Project Location Figure 2, 2A-D. Current Conditions Plan View Tables 5A-5H. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment




OCT 2023 1:1200

KRJ

17-008

FIGURE

Table 5A Visual Stream Morphology Stability Assessment Reach ID

Assessed Length

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	35	35			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	34	34			100%	1		
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	34	34			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	34	34			100%			
		2. Thalweg centering at downstream of meander (Glide)	34	34			100%			
			•							
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	15	15			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	15	15			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	15	15			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	15	15			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	15	15			100%			

Table 5B Visual Stream Morphology Stability Assessment Reach ID

Assessed Length

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	3	3			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	3	3			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	3	3			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	3	3			100%			
		2. Thalweg centering at downstream of meander (Glide)	3	3			100%			
		•								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	-			Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0			NA			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			NA			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			NA			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			NA			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	0	0			NA			

Table 5C Visual Stream Morphology Stability Assessment Reach ID

Assessed Length

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	14	14			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	13	13			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	13	13			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	13	13			100%			
		2. Thalweg centering at downstream of meander (Glide)	13	13			100%			
		•						•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	5	5			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	5	5			100%			

Table 5D Visual Stream Morphology Stability Assessment Reach ID

Assessed Length

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Stabilizing Woody
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	22	22			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	21	21			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	21	21			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	21	21			100%			
		2. Thalweg centering at downstream of meander (Glide)	21	21			100%			
		•	•							
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	-			Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	10	10			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%			

Table 5E Visual Stream Morphology Stability Assessment Reach ID

Assessed Length

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	44	44			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	43	43			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	43	43			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	43	43			100%			
		2. Thalweg centering at downstream of meander (Glide)	43	43			100%			
		•								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	25	25			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	25	25			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	25	25			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	25	25			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	25	25			100%			

Table 5F Visual Stream Morphology Stability Assessment Reach ID

Assessed Length

Heron UT-6 781

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Stabilizing Woody
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	34	34			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	33	33			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	33	33			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	33	33			100%			
		2. Thalweg centering at downstream of meander (Glide)	33	33			100%			
		•					•			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	_		-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Table 5G Visual Stream Morphology Stability Assessment Reach ID

Assessed Length

Heron UT-7 996

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	44	44			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	44	44			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	44	44			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	44	44			100%			
		2. Thalweg centering at downstream of meander (Glide)	44	44			100%			
	-	•								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	19	19			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	19	19			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	19	19			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	19	19			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	19	19			100%			

Table 5H Visual Stream Morphology Stability Assessment Reach ID

Assessed Length

Heron UT-8 605

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	24	24			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	23	23			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	23	23			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	23	23			100%			
		2. Thalweg centering at downstream of meander (Glide)	23	23			100%			
		•								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	_		_	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	9	9			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	9	9			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	9	9			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	9	9			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	9	9			100%			

Table 6 Vegetation Condition Assessment

Heron

Planted Acreage ¹	12.05					
	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor		0 acres	none	0	0.00	0.0%
		С	umulative Total	0	0.00	0.0%

Easement Acreage²

17.64

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
	A patch of Japanese knotweed was observed along the left bank of UT-8. It was treated in September 2023 and will continue to be monitored for signs of vitality.	1000 SF	none	1	0.07	0.4%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1, 2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likely trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their externer risk/threat level for mapping as points where <u>isolated</u> specimens are found, particularly early in a projects monitoring history. However, areas of discreet, dense patches will for subselog specimens and below as one that was found to be helpful for symbolizing invasives polygons, particularly for situations where the condition for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and bespecies can be listed as a map inset, in legend items if the number

Appendix C Vegetation Data

Table 7. Planted Bare Root Woody Vegetation Table 8. Total stems by Plot and Species Table 9. Temporary Vegetation Data Vegetation Plot Photographs Height Data

Species	Total*
Acres	12.05
Alnus serrulata	500
Asimina triloba	100
Betula nigra	400
Carpinus caroliniana	800
Cephalanthus occidentalis	25
Cercis canadensis	500
Cornus amomum	2500
Diospyros virginiana	350
Fraxinus americana	100
Fraxinus pennsylvanica	2500
Liriodendron tulipifera	125
Nyssa sylvatica	500
Platanus occidentalis	2400
Quercus lyrata	900
Quercus nigra	2000
Quercus phellos	1900
Sambucus canadensis	25
TOTALS	15,625*
Average Stems/Acre	1297

Table 7. Planted Bare Root Woody Vegetation: Heron Site

*Live stakes of *Salix nigra* were planted, but are not included in this table.

Table 8. Total stems by plot and species Project Code 17.008. Project Name: Heron Stream and Wetland

																Current	Plot D	ata (MY	5 2023)												
			17.0	08-01-0	0001	17.0	008-01-	0002	17.0	008-01-0	0003	17.0	008-01-0	004	17.	008-01-0	005	17.0	008-01-0	0006	17.0	08-01-0	0007	17.0	008-01-	8000	17.(008-01-0	0009	17.0	008-01-0	010
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	т
Acer rubrum	red maple	Tree																													\square	
Alnus serrulata	hazel alder	Shrub																														
Asimina triloba	pawpaw	Tree																						1	1	1				1	1	ſ
Betula nigra	river birch	Tree																												1	1	1
Carpinus	hornbeam	Tree																														
Carpinus caroliniana	American hornbeam	Tree	2	2	2	1	1	1				5	5	5)		
Carya	hickory	Tree																													\square	
Celtis occidentalis	common hackberry	Tree																														-
Cephalanthus occidentalis	common buttonbush	Shrub																													\square	
Cercis canadensis	eastern redbud	Tree	1	1	1	4	4	4													2	2	2	2	2	2						-
Cornus amomum	silky dogwood	Shrub																						1	1	1						
Diospyros virginiana	common persimmon	Tree	7	7	7										1	1	1	2	2	2	1	1	1				2	2	2		\square	
Fraxinus americana	white ash	Tree																									3	3	3		\square	
Fraxinus pennsylvanica	green ash	Tree													1	1	1	5	5	5							1	1	1		\square	
Liquidambar styraciflua	sweetgum	Tree																											10		\square	5
Liriodendron	tuliptree																														\square	
Liriodendron tulipifera	tuliptree	Tree				1	1	1																								-
Nyssa sylvatica	blackgum	Tree																			1	1	1				1	1	1		\square	
Platanus occidentalis	American sycamore	Tree	1	1	1				3	3	3				5	5	5							2	2	2				2	2	7
Populus deltoides	eastern cottonwood	Tree																													\square	
Quercus	oak	Tree							4	4	4													1	1	1						
Quercus lyrata	overcup oak	Tree							1	1	1																2	2	2		\square	
Quercus nigra	water oak	Tree				2	2	2				1	1	1	1	1	1				1	1	1	3	3	3	3	3	3		\square	
Quercus pagoda	cherrybark oak	Tree							1	1	1																				\square	
Quercus phellos	willow oak	Tree	2	2	2							2	2	2				1	1	1	2	2	2							4	4	Ĺ
Quercus rubra	northern red oak	Tree																			1	1	1				1	1	1		\square	
Salix nigra	black willow	Tree																														
Sambucus canadensis	Common Elderberry	Shrub																													\square	
Ulmus americana	American elm	Tree																														
Ulmus rubra	slippery elm	Tree																														
Unknown		Shrub or Tree																														
		Stem count	13	13	13	8	8	8	9	9	9	8	8	8	8	8	8	8	8	8	8	8	8	10	10	10	13	13	23	8	8	11
		size (ares)		1			1			1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	-
		Species count	5	5	5	4	4	4	4	4	4	3	3	3	4	4	4	3	3	3	6	6	6	6	6	6	7	7	8	4	4	ŗ
		Stems per ACRE	526.1	526.1	526.1	323.7	323.7	323.7	364.2	364.2	364.2	323.7	323.7	323.7	323.7	323.7	323.7	323.7	323.7	323.7	323.7	323.7	323.7	404.7	404.7	404.7	526.1	526.1	930.8	323.7	323.7	445.2

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Project Code 17.008. Proje							Curren	nt Plot D	ata (M	Y5 2023)										An	nual M	eans						
		1	17.	008-01-	0011	-	008-01-		<u> </u>	008-01-		17.	008-01-	0014	N	1Y5 (20	23)	N	1Y3 (20)	21)		1Y2 (20		M	Y1 (201	(9)	M	YO (2019)	
Scientific Name	Common Name	Species Type			т	PnoLS		т	PnoLS		т	PnoLS		т	PnoLS		т	PnoLS		т	PnoLS		т	PnoLS		т	PnoLS	<u> </u>	<u> </u>
Acer rubrum	red maple	Tree																					7			4			
Alnus serrulata	hazel alder	Shrub	1	1	1										1	1	1	1	1	1	1	1	. 1	. 1	1	1	4	4	4
Asimina triloba	pawpaw	Tree													2	2	2	2	2	2	2	2	2	2 14	14	14	21	21	21
Betula nigra	river birch	Tree				1	1	. 1	2	2	2				4	4	4	3	3	3	4	4	4	4	4	4	2	2	2
Carpinus	hornbeam	Tree									12						12												
Carpinus caroliniana	American hornbeam	Tree													8	8	8	7	7	7	' 8	8	8	i 7	7	7	13	13	13
Carya	hickory	Tree																		4	ł								
Celtis occidentalis	common hackberry	Tree																		3									
Cephalanthus occidentalis	common buttonbush	Shrub																									1	1	1
Cercis canadensis	eastern redbud	Tree													9	9	9	9	9	9	9 9	9	9	0 10	10	10	10	10	10
Cornus amomum	silky dogwood	Shrub	2	2	2	2	2	2			1				5	5	6	5	5	6	6	6	6	5	5	5	6	6	6
Diospyros virginiana	common persimmon	Tree													13	13	13	14	14	20	14	14	17	13	13	15	19	19	19
Fraxinus americana	white ash	Tree	1	1	1										4	4	4	4	4	4	5	5	5	3	3	3	5	5	5
Fraxinus pennsylvanica	green ash	Tree	3	3	3	5	5	5							15	15	15	13	13	14	12	12	12	2 13	13	13	15	15	15
Liquidambar styraciflua	sweetgum	Tree															13			5						3			
Liriodendron	tuliptree										3						3							1					
Liriodendron tulipifera	tuliptree	Tree													1	1	1	1	1	3	1	1	. 1	. 1	1	1	2	2	2
Nyssa sylvatica	blackgum	Tree	1	1	1				3	3	3				6	6	6	8	8	8	3 12	12	12	2 13	13	13	10	10	10
Platanus occidentalis	American sycamore	Tree	4	4	4	1	1	. 1	2	2	4				20	20	22	19	19	26	17	17	18	3 15	15	17	11	11	11
Populus deltoides	eastern cottonwood	Tree																					6	,		4			
Quercus	oak	Tree				1	1	. 1							6	6	6	8	8	8	8 10	10	10) 13	13	13	31	31	31
Quercus lyrata	overcup oak	Tree													3	3	3	2	2	2	1	1	. 1	. 5	5	5	8	8	8
Quercus nigra	water oak	Tree				2	2	2	1	1	1	1	. 1	1	15	15	15	10	10	10	13	13	13	18	18	18	19	19	19
Quercus pagoda	cherrybark oak	Tree													1	1	1	1	1	1	. 1	1	. 1						
Quercus phellos	willow oak	Tree										3	: 3	3	14	14	14	15	15	15	13	13	13	3 12	12	12	11	11	11
Quercus rubra	northern red oak	Tree													2	2	2	2	2	2	2 2	2	2	2 3	3	3	1	1	1
Salix nigra	black willow	Tree																		1									
Sambucus canadensis	Common Elderberry	Shrub																		1				1	1	1	2	2	2
Ulmus americana	American elm	Tree																		10)		11						
Ulmus rubra	slippery elm	Tree																								9			_
Unknown		Shrub or Tree																						1	1	1	5	5	5
		Stem count	12	12	12	12	12	12	8	8	26	4	4	4	129	129	160	124	124	165	131	131	159	152	152	176	196	196	196
		size (ares)		1			1			1			1			14			14			14			14			14	
		size (ACRES)		0.02			0.02			0.02			0.02			0.35			0.35			0.35			0.35			0.35	
		Species count	6		6	6	6	6	4	4	7	2	2	2	18										19			20	20
		Stems per ACRE	485.6	485.6	485.6	485.6	485.6	485.6	323.7	323.7	1052	161.9	161.9	161.9	372.9	372.9	462.5	358.4	358.4	477	378.7	378.7	459.6	439.4	439.4	508.7	566.6	566.6	566.6

Table 8. Total stems by plot and species Project Code 17.008. Project Name: Heron Stream and Wetland

Color for Density Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Species		50m	x 2m Tempo	rary Plot (Bea	ring)	
	T-1 (130°)	T-2 (319°)	T-3 (319°)	T-4 (285°)	T-5 (10°)	T-6 (344°)
Betula nigra				2	3	
Carpinus caroliniana	5					5
Cercis canadensis	3					2
Cornus ammomum						
Diospyros virginiana		3	5	6		
Fraxinus pennsylvanica			3		3	
Liriodendron tulipifera	1	1				
Platanus occidentalis	4	4	3	1	3	0
Quercus lyrata	2	2	2			
Quercus phellos	2	2		1	1	5
Quercus alba				2		
Total Stems	17	12	13	10	12	12
Total Stems/Acre	688	486	526	405	486	486

Table 9. Temporary Vegetation Plot Data: Heron Site

MY-05 HEIGHT DATA: Stems ranged in height from 100 cm to 375 cm.

Plot	SCIENTIFIC NAME	x	Y	Height (cm)	DBH	Vigor	Height (ft)	Plot Ave Height (ft)	Plot Ave Height (ft 7 tallest stems* (>260 stems/ac)
1	Carpinus caroliniana	2.6	3.0	220	0.1	4	7.22		
1	Diospyros virginiana	0.4	2.2	190	0.1	4	6.23		
1	Diospyros virginiana	9.0	1.9	210	0.4	4	6.89		
1	Diospyros virginiana	6.3	4.5	245	0.5	4	8.04		
1	Diospyros virginiana	7.8	5.7	164	0.05	4	5.38		
1	Cercis canadensis	5.9	7.0	99		3	3.25		
1	Platanus occidentalis	7.7	9.6	235	0.5	4	7.71	6.61	7.92
1	Diospyros virginiana	4.0	8.1	260	0.4	4	8.53		
1	Diospyros virginiana	1.7	7.7	170	0.3	4	5.58		
1	Diospyros virginiana	5.5	5.2	245	0.8	4	8.04		
1	Carpinus caroliniana	5.1	1.9	98		4	3.22		
1	Quercus phellos	9.2	8.7	260	0.5	4	8.53		
1	Quercus phellos	0.5	9.0	225	0.2	4	7.38		
2	Quercus nigra	0.9	2.2	118		4	3.87		
2	Carpinus caroliniana	2.8	2.4	190	0.2	4	6.23		
2	Quercus nigra	8.6	0.0	135		4	4.43		
2	Cercis canadensis	6.4	5.4	330	0.3	4	10.83	E 40	F 01
2	Cercis canadensis	3.7	7.4	110		4	3.61	5.48	5.91
2	Cercis canadensis	1.6	7.0	170	0.2	4	5.58	1	
2	Liriodendron tulipifera	1.4	8.2	208	0.3	4	6.82		
2	Cercis canadensis	4.9	5.3	75		4	2.46		
3	Quercus	4.1	1.5	230	1	4	7.55		
3	Quercus	4.9	3.4	220	0.5	4	7.22		
3	Quercus	9.2	1.6	220	0.8	4	7.22		
3	Quercus	5.5	0.5	225	0.5	4	7.38		
3	Platanus occidentalis	8.8	6.0	430	1.3	4	14.11	9.75	10.52
3	Platanus occidentalis	6.6	7.2	340	1	4	11.15		
3	Quercus pagoda	8.3	9.4	280	1.5	4	9.19		
3	Platanus occidentalis	4.3	7.4	520	2.5	4	17.06		
3	Quercus lyrata	6.9	3.4	210	0.5	4	6.89		
4	Carpinus caroliniana	1.6	0.4	200	0.2	4	6.56		
4	Carpinus caroliniana	3.8	0.7	98		4	3.22		
4	Carpinus caroliniana	0.5	2.7	250	0.5	4	8.20		
4	Carpinus caroliniana	2.4	2.7	175	0.1	4	5.74		
4	Carpinus caroliniana	6.4	1.1	222	0.1	4	7.28	5.25	5.61
4	Quercus nigra	9.1	2.5	85		4	2.79		
4	Quercus phellos	3.7	4.2	140	0.05	4	4.59		
4	Quercus phellos	1.5	5.0	111		4	3.64		
5	Platanus occidentalis	1.7	2.5	600	4	4	19.69		
5	Platanus occidentalis	8.7	3.3	610	5.2	4	20.01	1	
5	Fraxinus pennsylvanica	9.7	0.6	380	3.3	4	12.47	1	
5	Platanus occidentalis	5.9	5.6	610	4.5	4	20.01	1 .	
5	Platanus occidentalis	7.6	5.9	580	4.5	4	19.03	15.83	17.34
5	Diospyros virginiana	9.9	6.1	290	2.2	4	9.51	1	
5	Quercus nigra	0.4	5.0	160	0.3	4	5.25	1	
5	Platanus occidentalis	3.9	2.2	630	4	4	20.67	1	
6	Diospyros virginiana	0.8	1.1	300	2.5	4	9.84		
6	Fraxinus pennsylvanica	2.0	2.4	320	2.5	4	10.50	1	
6	Diospyros virginiana	3.4	4.4	222	2.1	4	7.28	1	
6	Fraxinus pennsylvanica	5.2	5.9	280	2.1	4	9.19	1	
6	Fraxinus pennsylvanica	6.6	7.8	340	3	4	11.15	9.42	10.09
6	Fraxinus pennsylvanica	9.2	5.0	360	3	4	11.13	1	
6	Quercus phellos	7.5	6.3	144	1	4	4.72	1	
6	Fraxinus pennsylvanica	4.4	9.7	330	3	4	10.83	1	
7	Nyssa sylvatica	2.8	9.7 0.9	21	5	4	0.69		
7	Quercus phellos	1.4	3.6	21	0.2	4	7.35	1	
		7.7						1	
7	Diospyros virginiana		1.9	159	0.1	4	5.22	1	
7	Cercis canadensis	7.0	4.9	285	0.2	4	9.35	5.30	5.96
	Cercis canadensis	7.9	9.5	112	1	4	3.67		1
7									
7 7 7	Quercus rubra Quercus nigra	5.2 3.0	7.0 6.7	122 199	0.2	4	4.00 6.53		

* Where applicable. For plots that contain <7 stems, this number represents the average of all stems in the plot.

Plot	SCIENTIFIC NAME	x	Y	Height (cm)	DBH	Vigor	Height (ft)	Plot Ave Height (ft)	Plot Ave Height (ft) - 7 tallest stems* (>260 stems/ac)
8	Cercis canadensis	1.5	1.6	69		4	2.26		
8	Platanus occidentalis	0.1	9.8	420	3	4	13.78		
8	Quercus nigra	5.0	0.2	56		3	1.84		
8	Quercus	10.0	1.2	126		4	4.13		
8	Asimina triloba	9.2	8.6	115		3	3.77	6.71	8.52
8	Cornus amomum	2.1	8.8	175	0.5	4	5.74	0.71	0.02
8	Quercus nigra	2.5	5.8	295	2.5	4	9.68		
8	Cercis canadensis	0.0	0.3	101		4	3.31		
8	Platanus occidentalis	0.3	4.7	435	4	4	14.27		
8	Quercus nigra	0.0	8.1	252	1	4	8.27		
9	Quercus lyrata	1.1	1.6	110		4	3.61		
9	Fraxinus americana	1.8	3.7	160	0.5	4	5.25		
9	Fraxinus americana	0.2	4.8	235	1	4	7.71		
9	Quercus nigra	6.5	3.7	270	3	4	8.86		
9	Fraxinus americana	7.9	0.9	116		4	3.81		
9	Nyssa sylvatica	9.5	2.2	115		4	3.77		
9	Quercus nigra	7.6	5.1	185	1	4	6.07	5.92	7.42
9	Quercus nigra	7.1	7.3	180	0.5	4	5.91		
9	Quercus rubra	8.8	8.9	134	0.2	4	4.40]	
9	Diospyros virginiana	4.2	7.6	215	1	4	7.05	5 6 3 3 4 9	
9	Quercus lyrata	3.6	5.0	325	2	4	10.66		
9	Diospyros virginiana	2.4	9.4	173	0.2	4	5.68		
9	Fraxinus pennsylvanica	4.0	2.3	129		4	4.23		
10	Betula nigra	1.2	1.7	175	0.2	4	5.74		
10	Asimina triloba	0.7	0.5	600	7	4	19.69		
10	Platanus occidentalis	2.1	0.3	615	10	4	20.18		
10	Quercus phellos	3.9	3.3	66	10	4	2.17		
10	Quercus phellos	1.5	3.9	230	1	4	7.55	10.82	12.06
10	Platanus occidentalis	9.9	0.8	550	7	4	18.04		
10	Quercus phellos	7.8	3.0	153	1	4	5.02		
10	Quercus phellos	10.0	3.2	250	1.5	4	8.20		
11	Nyssa sylvatica	2.7	1.8	25		2	0.82		
11	Cornus amomum	9.0	0.3	206	1	4	6.76		
11	Cornus amomum	9.8	7.5	360	3	4	11.81		
11	Fraxinus pennsylvanica	5.4	7.3	306	2	2	10.04		
11	Fraxinus americana	1.1	8.4	360	2	4	11.81		
11	Platanus occidentalis	1.4	7.9	500	10	4	16.40	10.19	12.92
11	Fraxinus pennsylvanica	3.6	7.8	295	1.5	4	9.68		
11	Alnus serrulata	3.3	9.8	235	0.2	4	7.71		
11	Platanus occidentalis	4.0	6.7	380	4	4	12.47		
11	Platanus occidentalis	8.7	9.6	450	8	4	14.76		
11	Platanus occidentalis	7.0	0.2	400	4	4	13.12		
11	Fraxinus pennsylvanica	0.5	8.0	210	0.5	4	6.89		
12	Quercus	3.1	1.5	162	0.2	4	5.31		
12	Platanus occidentalis	6.4	0.3	480	3	4	15.75		
12	Fraxinus pennsylvanica	0.3	9.8	300	2	4	9.84		
12	Cornus amomum	9.1	2.4	300	2	4	9.84]	
12	Fraxinus pennsylvanica	5.5	6.7	355	2	4	11.65]	
12	Fraxinus pennsylvanica	7.4	8.1	345	3	4	11.32		
12	Quercus nigra	1.7	7.3	285	3	4	9.35	10.37	11.72
12	Fraxinus pennsylvanica	2.3	4.3	370	5	4	12.14	1	
12	Cornus amomum	6.3	4.2	290	2	4	9.51	1	
12	Fraxinus pennsylvanica	5	4.3	350	7	4	11.48	1	
12	Betula nigra	7	6.3	300	3	4	9.84	1	
12	Quercus nigra	4.8	9.8	255	1	4	8.37	1	
13	Betula nigra	2.4	4.4	235	0.1	4	7.05		
13	Betula nigra	0	2.4	335	2	4	10.99	1	
13	Quercus nigra	4.8	2.4 5	110	<u> </u>	4	3.61		
		6.9				4			
13	Nyssa sylvatica		1.9	118	4		3.87	8.65	9.37
13	Platanus occidentalis	8.9	2.8	500	4	4	16.40	1	
13	Nyssa sylvatica	6	8.8	121		4	3.97		
13	Nyssa sylvatica	8.3	9	161	0.1	4	5.28		
13	Platanus occidentalis	3.3	8	550	5	4	18.04		
14	Quercus phellos	9.4	7.2	95		4	3.12		
14	Quercus phellos	6.8	6.9	55	ļ	3	1.80	3.05	3.05
14	Quercus nigra	3.7	9.6	92		4	3.02	0.00	0.00
14	Quercus phellos	1.9	6.1	130		4	4.27		
							Site Average	8.10	9.17

* Where applicable. For plots that contain <7 stems, this number represents the average of all stems in the plot.

Appendix D Stream Geomorphology Data

Tables 10A-G. Baseline Stream Data Summary Tables 11A-G. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Table 12A-F. MY3 Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters – Cross Sections) Table 13A-G. MY3 Monitoring Data - Stream Reach Data Summary Cross Section Report

					Droiog	t Nom					eam Da			T 1 /01	EG fact	\ \									
Parameter	Gauga ²	Dee	i a mal O		Projec					JUU14			each: U					Deeler			Ma				
Farameter	Gauge ²	Reg	jional C	urve		Pre-	Existin	g Cona	ition		Ceda	rock Pa	rk Ref	U.	ausey F	let		Design			IVIC	onitorin	g Base	Ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)					4.7	8.5		11.1			8	8.1	12.1	10.7	11	11.3	7.8	8.4	9	8.3	11		13		4
Floodprone Width (ft)					13	20		30			15	18	25	122	131	140	10	75	100	25	100		100		4
Bankfull Mean Depth (ft))				0.5	0.7		1.1			0.8	0.8	1	1.3	1.4	1.4	0.6	0.6	0.7	0.4	0.5		0.6		4
¹ Bankfull Max Depth (ft))				0.8	1.1		2			1.1	1.4	1.4	1.9	2	2	0.7	0.8	1	0.6	0.8		1.1		4
Bankfull Cross Sectional Area (ft ²))					5.1						8			14.7		5.1	5.1	5.1	3.7	5.4		7.2		4
Width/Depth Ratio)				4.3	14.6		22			8	10.1	15.1	8	9	9	12	14	16	17.4	18.7		36.7		4
Entrenchment Ratio					1.6	2.5		4.3			1.9	2.1	2.2	11	12	13	5.1	8.9	11.1	3	8.3		9.3	 '	4
¹ Donk Usinht Dotio					1.4	1.9		2.5			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0		1.0	┣───┘	4
¹ Bank Height Ratio				<u> </u>	1.7	1.5		2.0			1.0	1.0			1.7		1.0	1.0	1.0	1.0	1.0	<u> </u>	1.0		
Riffle Length (ft)			1	1	—							1		1	1			1	1	2.7	19	16	53	11	31
Riffle Slope (ft/ft)					•						0.01	0.0316	0.0576	0.002	0.01	0.012	0.007	0.009	0.01	0	0.013	0.012	0.048	0.01	31
Pool Length (ft)					No dist				iffles and	d pools	0.01	0.0310	0.0070	0.002	0.01	0.012	0.007	0.003	0.01	6	23	20	80	12.9	34
Pool Max depth (ft)					•	due to	straighte	ening ac	tivities.		1.5	1.8	2.1		2.7		0.8	1.1	1.3	1.5	1.6	20	2.1	12.9	4
Pool Spacing (ft)					•						25	37	69	22	44	81	25	34	68	25	34		68	┢────┦	34
											23	57	09	22	44	01	23	34	00	23	34		00		- 34
Pattern				<u> </u>							20	00	20	47	20	20	05	24	60	05	24	1	00		
Channel Beltwidth (ft)											20	23	38	17	30	36	25	34	68	25	34		68	┣───┘	$ \longrightarrow $
Radius of Curvature (ft)					No dist	tinct repe	etitive pa	ttern of I	iffles and	d pools	11 1.4	16 2	27 3.3	9 0.8	31 2.8	113 10.3	17 2	25 3	85 10	17 2	25 3		85 10	┣───┘	$ \longrightarrow $
Rc:Bankfull width (ft/ft)					•	due to	straighte	ening ac	tivities.								51						101	┣───┘	\vdash
Meander Wavelength (ft) Meander Width Ratio					•						44 2.4	68	116 4.7	10	63 2.7	91 3.5	3	72	101 6	51	72 4		6	┣───┘	┝──┩
											2.4	2.8	4.7	1.5	2.1	3.0	3	4	0	3	4		0		
Transport parameters																									
Reach Shear Stress (competency) lb/f ²	2						0.	61										0.19				0.	24		
Max part size (mm) mobilized at bankful	I																								
Stream Power (transport capacity) W/m ²	2																								
Additional Reach Parameters																									
Rosgen Classification	n						Cç	g 5				Eb 4			E5			E/C 4				С	4		
Bankfull Velocity (fps))							.8										3.8				3	.6		
Bankfull Discharge (cfs)								9.3																	
Valley length (ft)				-				67																	
Channel Thalweg length (ft)								33										856				8	56		
Sinuosity (ft)								.3				1.2			1.46			1.3					.3		
Water Surface Slope (Channel) (ft/ft)							0.0	057				0.0258			0.0053			0.0057				0.0			
BF slope (ft/ft))																								
³ Bankfull Floodplain Area (acres))																								
⁴ % of Reach with Eroding Banks							6	51				0			0										
Channel Stability or Habitat Metric																									
Biological or Other	r																								
Shaded cells indicate that these will typically not be filled in.																									

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

					Projec	t Nam					ream D) - Segi		nmary each: U	T 3 (2	79 feet)									
Parameter	Gauge ²	Reg	ional C	urve	Ĺ		Existing					rock Pa			ausey F			Desigr	n		Мо	onitorin	ig Base	line	
Dimension and Substrate - Riffle Only	- I	LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					3.2	4.5		5.9			8	8.1	12.1	10.7	11	11.3	4.1	4.4	4.7	7.7	7.7		7.7		1
Floodprone Width (ft)					9	14		21			15	18	25	122	131	140	20	40	60	18	18	1	18		1
Bankfull Mean Depth (ft)					0.2	0.3		0.4			0.8	0.8	1	1.3	1.4	1.4	0.3	0.3	0.3	0.6	0.6		0.6		1
¹ Bankfull Max Depth (ft)					0.5	0.6		0.7			1.1	1.4	1.4	1.9	2	2	0.4	0.4	0.5	1	1		1		1
Bankfull Cross Sectional Area (ft ²)						1.4						8			14.7		1.4	1.4	1.4	4.5	4.5		4.5		1
Width/Depth Ratio					8	17.4		29.5			8	10.1	15.1	8	9	9	12	14	16	13.2	13.2		13.2		1
Entrenchment Ratio					1.4	2.2		3.8			1.9	2.1	2.2	11	12	13	4.9	9	12.7	2.3	2.3	1	2.3		1
¹ Bank Height Ratio					1.7	2.2		2.4			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0	1	1.0	1	1
Profile						•					•			•					•	•		•	•		
Riffle Length (ft)																		Ι	T	4	11	10	19	4.3	14
Riffle Slope (ft/ft)								44 a ma a f			0.01	0.0316	0.0576	0.002	0.01	0.012	0.023	0.031	0.035	0.011	0.029	0.027	0.736	0.017	14
Pool Length (ft)					NO dis		etitive pa straighte			a pools										4	9	8	21	4.9	13
Pool Max depth (ft)						due lo	straignte	ening ac	uviues.		1.5	1.8	2.1		2.7		0.4	0.6	0.7	1	1	1	1	0	1
Pool Spacing (ft)											25	37	69	22	44	81	13	18	35	13	18		35		14
Pattern	_		-		_						_		-	_	-		_	-	-	-	-	-	-	-	-
Channel Beltwidth (ft)											20	23	38	17	30	36	13	18	27	13	18		27		
Radius of Curvature (ft)					No dis	tinct ren	etitive pa	ttern of	riffles and	d nools	11	16	27	9	31	113	9	13	44	9	13		44		
Rc:Bankfull width (ft/ft)							straighte			a pools	1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		
Meander Wavelength (ft)						440 10	onaighte	oning ao			44	68	116	10	63	91	26	37	53	26	37		53		
Meander Width Ratio											2.4	2.8	4.7	1.5	2.7	3.5	3	4	6	3	4		6		
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							1.4	42										0.34				0	.56		
Max part size (mm) mobilized at bankfull																									
Stream Power (transport capacity) W/m ²					1																				
Additional Reach Parameters																									
Rosgen Classification							Co	g 5				Eb 4			E5			E/C 4				(24		
Bankfull Velocity (fps)								.6										3.6					1.1		
Bankfull Discharge (cfs)								5																	
Valley length (ft)							22	29																	
Channel Thalweg length (ft)							24											279					79		
Sinuosity (ft)							1.(1.2			1.46			1.15					.15		
Water Surface Slope (Channel) (ft/ft)							0.02	207				0.0258			0.0053			0.0193				0.0	0176		
BF slope (ft/ft)					<u> </u>																				
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks							10	00				0			0										
Channel Stability or Habitat Metric																									
Biological or Other																									

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

					Projec	ct Nam					eam Da) - Segi		nmary each: U	T 4 (4	50 feet)									
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existin	g Cond	lition		Ceda	rock Pa	rk Ref	C	ausey F	Ref		Desigr	n		Мс	onitorin	g Base	line	_
Dimension and Substrate - Riffle Only	1	LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					3.1	3.8		4.9			8	8.1	12.1	10.7	11	11.3	4.6	5	5.4	6.5	7.3		8		2
Floodprone Width (ft)					6	15		30			15	18	25	122	131	140	25	50	75	40	40		40		2
Bankfull Mean Depth (ft)					0.4	0.5		0.6			0.8	0.8	1	1.3	1.4	1.4	0.3	0.4	0.4	0.3	0.4		0.5		2
¹ Bankfull Max Depth (ft)					0.7	0.8		0.9			1.1	1.4	1.4	1.9	2	2	0.4	0.5	0.6	0.5	0.7		0.8		2
Bankfull Cross Sectional Area (ft ²)						2						8			14.7		1.8	1.8	1.8	2.2	3		3.7		2
Width/Depth Ratio					5.2	7.7		12.3			8	10.1	15.1	8	9	9	12	14	16	17.3	18.3		19.2		2
Entrenchment Ratio					1.3	3.9		6.1			1.9	2.1	2.2	11	12	13	5.4	10	14	5	5.6		6.2		2
¹ Bank Height Ratio					1.3	2.3		4.0			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0		1.0		2
Profile												•													
Riffle Length (ft)																			T	4	9	9	20	3.5	23
Riffle Slope (ft/ft)											0.01	0.0316	0.0576	0.002	0.01	0.012	0.037	0.05	0.056	0	0.021	0.017	0.061	0.014	23
Pool Length (ft)					No dis				riffles an	d pools								1		4	10	10	18	3.5	22
Pool Max depth (ft)					1	due lo	straighte	ening ad	uviues.		1.5	1.8	2.1		2.7		0.5	0.7	0.8	1.1	1.3		1.4		2
Pool Spacing (ft)											25	37	69	22	44	81	15	20	40	15	20		40		22
Pattern	_	_	-	-	_						_			_	-		_	-	-	_	-	-	-		
Channel Beltwidth (ft)											20	23	38	17	30	36	15	20	30	15	20		30		
Radius of Curvature (ft)					No die	tinct ron	atitiva na	ttorn of	riffles an	d noole	11	16	27	9	31	113	10	15	50	10	15		50		
Rc:Bankfull width (ft/ft)					NO UIS		straighte			u pools	1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		
Meander Wavelength (ft)							Straight	crining de			44	68	116	10	63	91	30	43	60	30	43		60		
Meander Width Ratio											2.4	2.8	4.7	1.5	2.7	3.5	3	4	6	3	4		6		L
Transport parameters																									
Reach Shear Stress (competency) lb/f ²	2						2.	79										0.6				0.	.59		
Max part size (mm) mobilized at bankfull																									
Stream Power (transport capacity) W/m ²																									
Additional Reach Parameters																									
Rosgen Classification							Eg	g 5				Eb 4			E5			E/C 4				C	; 4		
Bankfull Velocity (fps)							3	.7										4					4		·
Bankfull Discharge (cfs)							7	.3																	
Valley length (ft)								91																	
Channel Thalweg length (ft)								28										450					50		
Sinuosity (ft)								09				1.2			1.46			1.15					15		
Water Surface Slope (Channel) (ft/ft)							0.0	283				0.0258			0.0053			0.3111				0.0	254		
BF slope (ft/ft)																									
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks	5						5	6				0			0										
Channel Stability or Habitat Metric																									
Biological or Other	-																								

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

					Projec	t Nam						ata Sur ment/R	nmary each: U	T 5 (9	52 feet)									
Parameter	Gauge ²	Reg	ional C	urve	Ĺ		Existing					rock Pa			ausey F			Desigr	n		Мс	onitorin	g Base	line	_
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					2.5	3.7		6			8	8.1	12.1	10.7	11	11.3	4.6	5	5.4	4.9	6.9		8.1		4
Floodprone Width (ft)					4	12		30			15	18	25	122	131	140	25	50	75	40	40		40		4
Bankfull Mean Depth (ft)					0.3	0.5		0.6			0.8	0.8	1	1.3	1.4	1.4	0.3	0.4	0.4	0.3	0.4		0.5		4
¹ Bankfull Max Depth (ft)					0.5	0.8		0.9			1.1	1.4	1.4	1.9	2	2	0.4	0.5	0.6	0.5	0.7		0.8		4
Bankfull Cross Sectional Area (ft ²)						1.6						8			14.7		1.8	1.8	1.8	1.9	2.4		3.7		4
Width/Depth Ratio					3.6	8.8		20			8	10.1	15.1	8	9	9	12	14	16	12.6	18.3		20.9		4
Entrenchment Ratio					1.4	3.1		7.3			1.9	2.1	2.2	11	12	13	5.4	10	14	4.9	5.9	1	8.2		4
¹ Bank Height Ratio					1.3	1.5		2.0			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0	1	1.0		4
Profile					•	•							•	•											
Riffle Length (ft)												Ι			Ι					3	11	9	49	8.4	41
Riffle Slope (ft/ft)								44 a ma a f			0.01	0.0316	0.0576	0.002	0.01	0.012	0.037	0.05	0.056	0.004	0.028	0.027	0.051	0.01	41
Pool Length (ft)					NO dist		straighte		riffles and	a poois										4	12	10	59	8.5	41
Pool Max depth (ft)						due lo	straignte	ening ac	uviues.		1.5	1.8	2.1		2.7		0.5	0.7	0.8	0.8	1		1.1		4
Pool Spacing (ft)											25	37	69	22	44	81	15	20	40	15	20		40		41
Pattern	_		-		_						_	-	-	_	-	-	_	-	-	_	-	-	-	-	
Channel Beltwidth (ft)											20	23	38	17	30	36	15	20	30	15	20		30		<u> </u>
Radius of Curvature (ft)					No dist	tinct ren	atitiva na	ttern of	riffles and	d nools	11	16	27	9	31	113	10	15	50	10	15		50		<u> </u>
Rc:Bankfull width (ft/ft)							straighte			a pools	1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		ļ'
Meander Wavelength (ft)						440 10	onaighte	oning ao	avidoo.		44	68	116	10	63	91	30	43	60	30	43		60		<u> </u>
Meander Width Ratio											2.4	2.8	4.7	1.5	2.7	3.5	3	4	6	3	4		6		
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							2.	79										0.6				().5		
Max part size (mm) mobilized at bankfull																									
Stream Power (transport capacity) W/m ²																									
Additional Reach Parameters																									
Rosgen Classification							Eg	g 5				Eb 4			E5			E/C 4				E/	C 4		
Bankfull Velocity (fps)								.9										4					2.3		
Bankfull Discharge (cfs)								.5																	
Valley length (ft)							57																		
Channel Thalweg length (ft)							60											952					52		
Sinuosity (ft)							1.(1.2			1.46			1.15					.15		
Water Surface Slope (Channel) (ft/ft)							0.0	372				0.0258			0.0053			0.3111				0.0	256		
BF slope (ft/ft)					<u> </u>															ļ					
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks							5	0				0			0										
Channel Stability or Habitat Metric																									
Biological or Other																									

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

					Proied	t Nam					ream D) - Segi		nmary each: U	T 6 (7	81 feet)									
Parameter	Gauge ²	Reg	ional C	urve			Existing					rock Pa			ausey F			Desigr	1		Mo	onitorin	g Base	line	
Dimension and Substrate - Riffle Only	—	LL	UL	Eq.	Min	Mean	Med	Мах	SD⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Мах	SD⁵	n
Bankfull Width (ft)					4.6	6.4		9.6			8	8.1	12.1	10.7	11	11.3	4.2	4.6	4.9	6.1	6.5		6.8		2
Floodprone Width (ft)					7	16		46			15	18	25	122	131	140	25	50	75	40	40		40		2
Bankfull Mean Depth (ft)					0.2	0.3		0.3			0.8	0.8	1	1.3	1.4	1.4	0.3	0.3	0.4	0.4	0.4		0.5		2
¹ Bankfull Max Depth (ft)					0.4	0.5		0.8			1.1	1.4	1.4	1.9	2	2	0.4	0.5	0.5	0.6	0.8		0.9		2
Bankfull Cross Sectional Area (ft ²)						1.5						8			14.7		1.5	1.5	1.5	2.2	2.9		3.5		2
Width/Depth Ratio					15.3	26.7		48			8	10.1	15.1	8	9	9	12	14	16	13.2	15.1	1	16.9		2
Entrenchment Ratio					1.1	2.4		4.8			1.9	2.1	2.2	11	12	13	5.9	10.9	15.3	5.9	6.2	1	6.6		2
¹ Bank Height Ratio					3.7	5.0		7.5			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0	1	1.0	1	2
Profile						•							•	•						•		•	•		
Riffle Length (ft)											1				1					2	10	7	47	8.8	33
Riffle Slope (ft/ft)					No dia			44 a ma a f			0.01	0.0316	0.0576	0.002	0.01	0.012	0.031	0.042	0.047	0.001	0.028	0.024	0.126	0.021	33
Pool Length (ft)					INO DIST		straighte		riffles and	a poois										4	12	12	18	3.7	33
Pool Max depth (ft)						due lo	straighte	ening ac	uvilles.		1.5	1.8	2.1		2.7		0.4	0.6	0.7	1	1.2		1.3		2
Pool Spacing (ft)											25	37	69	22	44	81	13.7	18.3	36.7	14	18		37		33
Pattern		_	-	-	_						_	-		_	-	-	_	-	-	_	-	-	-	-	-
Channel Beltwidth (ft)											20	23	38	17	30	36	13.7	18.3	36.7	14	18		37		
Radius of Curvature (ft)					No dist	tinct ron	otitivo na	ttorn of	riffles and	d noole	11	16	27	9	31	113	9	14	46	9	14		46		
Rc:Bankfull width (ft/ft)					NU UISI		straighte			u poois	1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		
Meander Wavelength (ft)						000 10	Straight	u au	avideo.		44	68	116	10	63	91	27	39	55	27	39		55		
Meander Width Ratio											2.4	2.8	4.7	1.5	2.7	3.5	3	4	6	3	4		6		
Transport parameters																									
Reach Shear Stress (competency) lb/f ²	2						14.	.18										0.47				0	.56		
Max part size (mm) mobilized at bankfull																									
Stream Power (transport capacity) W/m ²	2																								
Additional Reach Parameters																									
Rosgen Classification							Cg	g 5				Eb 4			E5			E/C 4				(24		
Bankfull Velocity (fps)							3.											3.5				1	.8		
Bankfull Discharge (cfs)								.2																	
Valley length (ft)								36																	
Channel Thalweg length (ft)							52											781					'81		
Sinuosity (ft)							1.0					1.2			1.46			1.15					.15		
Water Surface Slope (Channel) (ft/ft)							0.0)28				0.0258			0.0053			0.0261				0.0)225		
BF slope (ft/ft)					<u> </u>																				
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks	5						6	8				0			0										
Channel Stability or Habitat Metric																									
Biological or Other	-																								

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

					Deri						eam Da			T 7 (0)	20 (、									
					Projec	t Nam	e/Num	ber (H	eron/10	00014) - Segi	ment/R	each: U	17(23	32 feet)									
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existing	g Cond	ition		Ceda	rock Pa	rk Ref	Ca	ausey F	Ref		Desigr	า		Me	onitorin	ig Base	line	
		.		Г .	N Alia	Maar	Mad	Max	0.05		N.A.	LMaan	Max	Min	Maan	Max	Min	Mad	Max	Min	Maar	Mad	Max	005	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					4.1	5.3		6.7 29			8	8.1	12.1 25	10.7 122	11 131	11.3 140	4.9 25	5.3 50	5.7	6.2 10	6.6 20		7.8 20		4
Floodprone Width (ft)					0.3	13 0.4		29 0.5			15 0.8	18 0.8	20	1.3	1.4	140	0.4	0.4	75 0.4	0.3	0.4		0.5		4
Bankfull Mean Depth (ft)				_	0.3	0.4		0.8			1.1	1.4	1.4	1.3	2	2	0.4	0.4	0.4	0.5	0.4		0.3		4
¹ Bankfull Max Depth (ft)					0.4			0.0			1.1		1.4	1.9		2									-
Bankfull Cross Sectional Area (ft ²)						2		00.0				8	45.4		14.7		2	2	2	1.8	2.7		3.3		4
Width/Depth Ratio					8.2	14.5		22.3			8	10.1	15.1	8	9	9	12	14	16	12.8	18.5		24.2		4
Entrenchment Ratio					1.7	2.4		5.2			1.9	2.1	2.2	11	12	13	5	9	13	1.6	2.8	 	3.1	L	4
¹ Bank Height Ratio					1.8	2.5		4.1			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0		1.0		4
Profile											-			-				-	-	-					
Riffle Length (ft)																				3	13	10	75	13	42
Riffle Slope (ft/ft)					No dis	tinct repe	etitive pat	ttern of	riffles and	d pools	0.01	0.0316	0.0576	0.002	0.01	0.012	0.027	0.036	0.04	0.006	0.029	_		0.011	42
Pool Length (ft)							straighte			a poolo										3	9	9	14	2.6	41
Pool Max depth (ft)							5	3			1.5	1.8	2.1		2.7		1.3	1.9	2.1	1	1.1		1.5		3
Pool Spacing (ft)											25	37	69	22	44	81	16	21	42	16	21		42		42
Pattern			-	_							- 20	L 00	00	47	20		40	04	00	40	04	1		1	T
Channel Beltwidth (ft)											20 11	23 16	38 27	17 9	30 31	36 113	16 10	21 16	32 53	16 10	21 16		32 53		
Radius of Curvature (ft)					No dis	tinct repe	etitive pat	ttern of	riffles and	d pools	1.4	2	3.3	9 0.8	2.8	10.3	2	3	10	2	3		10		
Rc:Bankfull width (ft/ft)					-	due to	straighte	ening ac	tivities.	-	44	68	116	10	63	91	31	45	64	31	45		64		
Meander Wavelength (ft) Meander Width Ratio											2.4	2.8	4.7	1.5	2.7	3.5	3	43	6	3	43		6		
											2.4	2.0	4.7	1.5	2.1	5.5	5		0	5	4		0		
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							2.3	36										0.45				0	.61		
Max part size (mm) mobilized at bankfull																				1					
Stream Power (transport capacity) W/m ²																				1					
Additional Reach Parameters																									
Rosgen Classification							Cg	15			I	Eb 4			E5			Eb 4				C	b 4		
Bankfull Velocity (fps)							3.								-			3.5					2.6		
Bankfull Discharge (cfs)							7																		
Valley length (ft)							75	55																	
Channel Thalweg length (ft)							77											232				2	32		
Sinuosity (ft)							1.(03				1.2			1.46			1.15					.15		
Water Surface Slope (Channel) (ft/ft)							0.02	248				0.0258			0.0053			0.0222				0.0	0268		
BF slope (ft/ft)																									
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks							7	6				0			0										
Channel Stability or Habitat Metric											1			1											
Biological or Other											1			1											
haded cells indicate that these will typically not be filled in.																									

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

					Projec	ct Nam					ream D) - Segi		nmary each: U	T 8 (6	05 feet)									
Parameter	Gauge ²	Reg	jional C	urve			Existin					rock Pa			ausey F	-		Desig	า		Мс	onitorin	g Base	line	
Dimension and Substrate - Riffle Only	- I	LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Мах	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					4.2	5.1		6.1			8	8.1	12.1	10.7	11	11.3	5.5	5.9	6.3	6.5	7.9		9.3		2
Floodprone Width (ft)					5	15		30			15	18	25	122	131	140	25	50	75	20	30		40		2
Bankfull Mean Depth (ft)					0.4	0.5		0.6			0.8	0.8	1	1.3	1.4	1.4	0.4	0.4	0.5	0.4	0.4		0.4		2
¹ Bankfull Max Depth (ft)					0.6	0.8		1			1.1	1.4	1.4	1.9	2	2	0.5	0.6	0.7	0.7	0.7		0.7		2
Bankfull Cross Sectional Area (ft ²)						2.5						8			14.7		2.5	2.5	2.5	2.6	3.2		3.7		2
Width/Depth Ratio					7	11.3		15.3			8	10.1	15.1	8	9	9	12	14	16	16.3	19.8		23.4		2
Entrenchment Ratio					1.1	2.7		4.9			1.9	2.1	2.2	11	12	13	4.6	8.5	11.9	2.2	4.2	1	6.2		2
¹ Bank Height Ratio					1.4	2.3		3.7			1.0	1.8	1		1.4		1.0	1.0	1.3	1.0	1.0	1	1.0	Ī	2
Profile							•						•			•									
Riffle Length (ft)											I	1						1	T	5	11	11	19	3.4	23
Riffle Slope (ft/ft)					No dia	4		44 a ma a f		-l l	0.01	0.0316	0.0576	0.002	0.01	0.012	0.023	0.03	0.034	0.007	0.02	0.017	0.041	0.009	23
Pool Length (ft)					INO DIS				riffles an	a pools										6	15	15	24	4.8	23
Pool Max depth (ft)						uue lo	straighte	ening ac	livilles.		1.5	1.8	2.1		2.7		0.5	0.8	0.9	0.9	1.3		1.6		2
Pool Spacing (ft)											25	37	69	22	44	81	17	24	47	17	24		47		23
Pattern	_	_	-	-	_						_	-		_	-		_	-	-	_	-	-	-	-	_
Channel Beltwidth (ft)											20	23	38	17	30	36	17	24	36	17	24		36		
Radius of Curvature (ft)					No dis	tinct ren	atitiva na	ttern of	riffles an	d nools	11	16	27	9	31	113	11	18	59	11	18		59		
Rc:Bankfull width (ft/ft)							straighte			u pools	1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		
Meander Wavelength (ft)						440 10	onaight	orning ao			44	68	116	10	63	91	35	50	71	35	50		71		
Meander Width Ratio											2.4	2.8	4.7	1.5	2.7	3.5	3	4	6	3	4		6		
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							1.	85										0.44				0	.32		
Max part size (mm) mobilized at bankfull																									
Stream Power (transport capacity) W/m ²																									
Additional Reach Parameters																									
Rosgen Classification							Eg	g 5				Eb 4			E5			E/C 4				C	; 4		
Bankfull Velocity (fps)								.6										3.6					2.8		
Bankfull Discharge (cfs)								.1																	
Valley length (ft)								20																	
Channel Thalweg length (ft)								43										605					05		
Sinuosity (ft)								04				1.2			1.46			1.15					.15		
Water Surface Slope (Channel) (ft/ft)					L		0.0	218			ļ	0.0258		ļ	0.0053			0.019		ļ		0.0	138		
BF slope (ft/ft)					L						ļ			ļ						ļ					
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks							8	0				0			0										
Channel Stability or Habitat Metric																									
Biological or Other																									

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

Table 11a. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 1 (856 feet)

Parameter	Pre	e-Exist	ing C	onditi	on	Ce	daroc	k Ref	ferenc	e Re	ach Data	C	Cause	y Refe	erenc	e Rea	ach D	ata				Desig	jn				As-bu	ilt/Bas	eline	
¹ Ri% / Ru% / P% / G% / S%																			60) 1	3 14	4 13	3		43	19	19	19		
¹ SC% / Sa% / G% / C% / B% / Be%						9	22	39	18	11		4	54	28	11		1	2												
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						0.12	4.1	9.8	161	2568		0.32	0.5	0.9	24	11	6													
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	29	71					33			66					50) 5	0										25	75		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0	14	43	43			66		33					100												100					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step: Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock: dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 11b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 3 (279 feet)

Parameter		Pre-Ex	sting	Condi	tion	Ce	daroc	k Ref	ferenc	e Read	h Data	(Cause	y Re	ieren	ce Re	each Data				Desig	gn			As-b	uilt/Ba	seline	
¹ Ri% / Ru% / P% / G% / S%																		74	8	8 9	9 8	8	55	5 1	5 15	5 15		
¹ SC% / Sa% / G% / C% / B% / Be%						9	22	39	18	11		4	54	2	8	11	1 2											
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						0.12	4.1	9.8	161	2568		0.32	0.5	0.	9	24 1	116											
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	33	33 3	3				33			66						50	50								100	D		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0		3	3 66	6		66		33					100										100)				

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rospen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 11c. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)	
Project Name/Number (Heron/100014) - Segment/Reach: UT 4 (450 feet)	

				110	jeot n	unich	Turin			1,100014	, ocg	menu	Neuo				cory												
Parameter	Pre-Exi	sting (Condit	ion	C	edaro	ock R	Refere	nce	Reach D	ata	C	ause	y Ref	ferer	nce R	leach	Data				Design				As-bui	lt/Basel	ine	
¹ Ri% / Ru% / P% / G% / S%																			63	3 1	2 13	12		48	17	18	17		
¹ SC% / Sa% / G% / C% / B% / Be%					ę	9 2	2 3	39 ⁻	18	11		4	54	2	8	11	1	2											
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)					0.12	2 4.	1 9	9.8 10	61	2568		0.32	0.5	0.	9	24	116												
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	25 25	5 50				3	3			66						50	50										100		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0	25 25	5 50			66	6	;	33					100											100					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-construction distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 11d. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 5 (952 feet)

Parameter		Pre	-Exist	ing Cond	ition		Cedar	rock	Refere	nce R	Reach D	Data	C	ausey	/ Refe	rence	Reac	h Data			0	Design				As-bu	ilt/Base	line	·
¹ Ri% / Ru% / P% / G% / S%																			58	14	14	14		50	17	17	16		
¹ SC% / Sa% / G% / C% / B% / Be%							9 2	22	39	8	11		4	54	28	11	1	2											
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						0.	12 4	l.1	9.8 10	61 25	68		0.32	0.5	0.9	24	116												
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	20	20	40	20			;	33			66					50	50										100		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0		20	20	60			66		33					100										100					

Shaded cells indicate that these will typically not be filled in

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the twical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons,

Table 11e. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 6 (781 feet)

Parameter	F	Pre-Exis	ting C	ondition	Ce	daroc	k Ref	ferenc	e Rea	ach Da	ita	Ca	usey	Refe	rence	e Reach I	Data	De	sign			As-bui	lt/Bas	eline	
¹ Ri% / Ru% / P% / G% / S%																		64 12 12	12	46	18	18	18		
¹ SC% / Sa% / G% / C% / B% / Be%					9	22	39	18	11			4	54	28	11	1	2								
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)					0.12	4.1	9.8	161	2568			0.32	0.5	0.9	24	116									
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	40 2	20 20	20			33			66						50	50							100		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0			100		66		33						100							100					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-construction distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 11f. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 7 (232 feet)

Parameter	F	Pre-Exis	sting C	onditi	on	Ce	daroc	k Re	ferenc	e Read	ch Data	0	ausey	Refe	rence	e Reach	Data	Desi	ign		As-	built/B	aseline	
¹ Ri% / Ru% / P% / G% / S%																		76 7 8	7	60	13	14 1	3	
¹ SC% / Sa% / G% / C% / B% / Be%						9	22	39	18	11		4	54	28	11	1	2							
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						0.12	4.1	9.8	161	2568		0.32	0.5	0.9	24	116								
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10		57 29	14				33			66					50	50					25	75		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0		29	71			66		33					100							100				

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 11g. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 8 (605 feet)

Parameter		Pre	e-Exist	ing Cor	ndition	Ce	daroc	k Ref	erenc	e Rea	ch Data	0	ause	/ Ref	eren	ce Re	each	Data				Desig	In				As-bu	ilt/Ba	seline	
¹ Ri% / Ru% / P% / G% / S%																			60	13	3 14	4 13	3		41	20	20	19		
¹ SC% / Sa% / G% / C% / B% / Be%						9	22	39	18	11		4	54	28	8 1	1	1	2												
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						0.12	4.1	9.8	161	2568		0.32	0.5	0.9		.4 1	16													
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	25	25	50				33			66					5	60	50										50	50		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0		50		50		66		33					100												100					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

				Tab	ole 12	a. M	onitor	ing D)ata -	Dime	ensio	nal Mo	orpho	ology	Sum	mary	(Dim	ensio	nal Pa	arame	eters -	- Cros	ss Se	ction	s)										
								Proje	ct Na	me/N	umb	er (He	ron/1	00014	4) S	egme	ent/R	each:	UT 1	(856 t	feet)														
		C	Cross S	Section	n 1 (Poo	ol)			C	cross S	Sectior	2 (Riff	le)			(Cross S	Section	3 (Riff	ile)			C	ross S	Section	4 (Poo	ol)			C	ross S	ection	5 (Riffl	e)	
Based on fixed baseline bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used																																			
Bankfull Width (ft)	9.2	8.5	8.5	11.5		9.7		10.7	14.7	15.3	16.0		14.1		13.0	14.4	17.7	13.0		16.2		8.9	9.7	9.1	10.0		11.5		8.3	9.0	10.7	12.4		8.3	
Floodprone Width (ft)	NA	NA	NA	NA		NA		100	100	100	100		100		100	100	100	100		100		NA	NA	NA	NA		NA		25	25	25	25		25	
Bankfull Mean Depth (ft)	1.1	1.2	1.2	0.9		1.1		0.6	0.4	0.4	0.4		0.4		0.4	0.3	0.3	0.4		0.3		0.8	0.7	0.7	0.7		0.6		0.4	0.4	0.3	0.3		0.4	
Bankfull Max Depth (ft)	2.1	2.2	2.2	2.3		2.1		0.9	0.8	0.9	1.0		0.9		0.7	0.7	0.7	0.6		0.6		1.6	1.6	1.5	1.6		1.4		0.6	0.6	0.7	0.6		0.7	
Bankfull Cross Sectional Area (ft ²)	10.5	10.5	10.5	10.5		10.5		6.1	6.1	6.1	6.1		6.1		4.6	4.6	4.6	4.6		4.6		6.8	6.8	6.8	6.8		6.8		3.7	3.7	3.7	3.7		3.7	
Bankfull Width/Depth Ratio	NA	NA	NA	NA		NA		18.8	35.4	38.4	40.0		32.5		36.7	45.1	68.1	36.8		57.4		NA	NA	NA	NA		NA		18.6	21.9	30.9	41.9		18.5	
Bankfull Entrenchment Ratio	NA	NA	NA	NA		NA		9.3	6.8	6.5	6.3		7.1		7.7	6.9	5.6	7.7		6.2		NA	NA	NA	NA		NA		3.0	2.8	2.3	2.0		3.0	
Low Bank Height (ft)	2.1	2.2	2.1	2.2		1.9		0.9	0.7	0.9	1.0		0.9		0.7	0.7	0.7	0.6		0.6		1.6	1.6	1.5	1.6		1.4		0.6	0.6	0.7	0.6		0.6	
Bankfull Bank Height Ratio*	1.00	1.00	0.95	0.96		0.91		1.00	0.88	1.00	1.00		1.05		1.00	1.00	1.00	1.00		0.89		1.00	1.00	1.00	1.00		1.04		1.00	1.00	1.00	0.96		0.97	
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)																																			
			Cross S	Section	6 (Poo	I)				Cross	Sectior	17 (Pool	I)				Cross	Section	8 (Riffle	e)															
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+														
Record elevation (datum) used																																			
Bankfull Width (ft)	12.8	13.2	15.7	13.1		17.1		9.6	10.4	10.5	15.4		11.2		11.2		11.4	13.8		13.5															1
Floodprone Width (ft)	NA	NA	NA	NA		NA		NA	NA	NA	NA		NA		100	100	100	100		100															
Bankfull Mean Depth (ft)	0.7	0.7	0.6	0.7		0.5		0.8	0.8	0.8	0.5		0.7		0.6	0.6	0.6	0.5		0.5															1
Bankfull Max Depth (ft)	1.6	1.7	1.6	1.7		1.7		1.5	1.7	1.5	1.6		1.5		1.1	1.0	1.1	1		1.1															1
Bankfull Cross Sectional Area (ft ²)	9.4	9.4		9.4		9.4		8.0	8.0	8.0	8		8		7.2	7.2	_	7.2		7.2															
Bankfull Width/Depth Ratio		NA	NA	NA		NA		NA	NA	NA	NA		NA		17.4	20.0		26.45		25.3															L
Bankfull Entrenchment Ratio	NA	NA	NA	NA		NA		NA	NA	NA	NA		NA		8.9	8.3	8.8	7.25		7.4															
Low Bank Height (ft)	1.6	1.7	1.6	1.7		1.6		1.5	1.7	1.5	1.6		1.5		1.1	1.0	1.1	1.1		1.0															
Bankfull Bank Height Ratio*	1.00	1.00	1.00	1.00		0.92		1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.10		0.96															L
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)																																			

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary." *Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

				Tab	ole 12	b. Mo														arame		- Cro	ss Se	ction	s)						
								Proje	ct Na	me/N	umbe	er (He	ron/1	0001	4) S	egme	ent/Re	each:	UT 3	(279 f	feet)										
		C	cross S	Section	9 (Poo	ol)			С	ross S	ection	10 (Rif	fle)																		
Based on fixed baseline bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+																	
Record elevation (datum) used																															
Bankfull Width (ft)	4.2	5.6	5.8	5.8		6.7		7.7	7.0	7.0	7.4		7.5																		
Floodprone Width (ft)	NA	NA		NA		NA		18	18	18	18		18																		
Bankfull Mean Depth (ft)	0.7	0.5	0.5	0.5		0.4		0.6	0.6	0.6	0.6		0.6																		
Bankfull Max Depth (ft)		0.8	0.8	0.7		0.7		1.0	1.1		1.0		1.1																		
Bankfull Cross Sectional Area (ft ²)	2.9	2.9	2.9	2.9		2.9		4.5		4.5	-		4.5																		
Bankfull Width/Depth Ratio	NA	NA	NA	NA		NA		13.2	10.9	10.9	12.3		12.5																		
Bankfull Entrenchment Ratio	NA	NA	NA	NA		NA		2.3	2.6	2.6	2.4		2.4																		
Low Bank Height (ft)		0.3		0.5		0.4		1.0	1.1		1.1		1.1																		
Bankfull Bank Height Ratio*	1.00	0.38	1.00	0.79		0.63		1.00	1.00	1.00	1.10		0.95																		
Cross Sectional Area between end pins (ft ²)																															
d50 (mm)																															
Based on fixed baseline bankfull elevation ¹																															
Record elevation (datum) used																															
Bankfull Width (ft)																															
Floodprone Width (ft)																															
Bankfull Mean Depth (ft)																															
Bankfull Max Depth (ft)																															
Bankfull Cross Sectional Area (ft ²)																										<u> </u>		ļ			
Bankfull Width/Depth Ratio																										<u> </u>		ļ			
Bankfull Entrenchment Ratio																										<u> </u>		ļ			
Low Bank Height (ft)					<u> </u>	<u> </u>			L		—			<u> </u>	I					<u> </u>								I			
Bankfull Bank Height Ratio*																											ļ	ļ			
Cross Sectional Area between end pins (ft ²)																												ļ			
d50 (mm)																															

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and basel on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time periodical development. Input the elevation used as the datafield data from a prior years the maintenance of the baseline datafield data from a prior years this must be discussed with EEP. If this cannot be resolved in time periodical development. Since a state and data for a given years this must be discussed with EEP. If this cannot be resolved in time periodical development as maintenance and periodical development. The data for a given years this must be discussed with EEP. If this cannot be resolved in time periodical development as maintenance and periodical development. The data for a given years this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."
*Bank Height Ratio is calculated based on the As-built (MYO) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

				Tab	ole 12	c. Mo	onitor	ring D)ata -	Dime	nsior	nal Mo	orpho	ology	Sumr	nary	(Dime	ensio	nal Pa	arame	eters -	- Cro	ss Se	ction	s)						
								Proje	ct Na	me/N	umbe	er (He	ron/1	00014	4) S	egme	ent/Re	ach:	UT 4	(450 f	eet)										
		С	ross S	ection	11 (Po	ol)			С	ross Se	ection	12 (Rif	fle)		Í	C	ross S	ection	13 (Riff	ile)			С	ross S	ection	14 (Po	ol)		T		
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base						MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	1	Т	Т
Record elevation (datum) used																													T	T	
Bankfull Width (ft)	6.0	7.9	9.4	9.6		7.9		6.5	7.4	10.6	11.2		8.2		8.0	7.9	11.3	7.8		8.0		9.1	11.0	10.9	11.3		11.7				
Floodprone Width (ft)	NA	NA	NA	NA		NA		40	40	40	40		40		40	40	40	40		40		NA	NA	NA	NA		NA				
Bankfull Mean Depth (ft)	0.8	0.6	0.5	0.5		0.6		0.3	0.3	0.2	0.2		0.3		0.5	0.4	0.3	0.4		0.4		0.7	0.6	0.6	0.6		0.6				
Bankfull Max Depth (ft)	1.1	1.1	1.3	1.2		1.2		0.5	0.6	0.5	0.5		0.7		0.8	0.8	0.8	0.8		0.8		1.4	1.4	1.4	1.4		1.4			T	
Bankfull Cross Sectional Area (ft ²)	4.8	4.8	4.8	4.8		4.8		2.2	2.2	2.2	2.2		2.2		3.7	3.5	3.5	3.5		3.5		6.8	6.8	6.8	6.8		6.8			T	
Bankfull Width/Depth Ratio	NA	NA	NA	NA		NA		19.2	24.9	51.1	57.0		30.6		17.3	17.8	36.5	17.4		18.3		NA	NA	NA	NA		NA			T	
Bankfull Entrenchment Ratio	NA	NA	NA	NA		NA		6.2	5.4	3.8	3.6		4.9		5.0	5.1	3.5	5.1		5.0		NA	NA	NA	NA		NA			T	
Low Bank Height (ft)	1.1	0.9	1.3	1.2		1.1		0.5	0.5	0.5	0.5		0.6		0.8	0.8	0.8	0.7		0.8		1.4	1.4	1.4	1.4		1.4			T	
Bankfull Bank Height Ratio*	1.00	0.82	1.00	1.00		0.92		1.00	0.83	1.00	1.00		0.96		1.00	1.00	1.00	0.88		0.97		1.00	1.00	1.00	1.00		1.02			T	
Cross Sectional Area between end pins (ft ²)																															
d50 (mm)																															
Based on fixed baseline bankfull elevation ¹																															
Record elevation (datum) used																															
Bankfull Width (ft)																															
Floodprone Width (ft)																															
Bankfull Mean Depth (ft)																															
Bankfull Max Depth (ft)																															
Bankfull Cross Sectional Area (ft ²)																															
Bankfull Width/Depth Ratio																															
Bankfull Entrenchment Ratio																															
Low Bank Height (ft)																															
Bankfull Bank Height Ratio*																															
Cross Sectional Area between end pins (ft ²)																															
d50 (mm)																															

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

*Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

				Tab	ole 12	d. Mo						nal Mo er (Her									eters - leet)	- Cros	ss Se	ction	s)										
		C	ross Se	ection	15 (Po	ol)						16 (Riff			Í			ection					Cr	oss Se	ection '	18 (Rif	fle)			С	ross Se	ection	19 (Poo	l)	
Based on fixed baseline bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used																																			
Bankfull Width (ft)	4.7	9.4	8.7	10.4		8.3		6.3	5.7	9.4	11.0		9.7		5.4	5.7	5.9	5.9		9.9		8.1	9.2	12.2	12.7		9.9		7.8	8.7	11.4	14.2		12.6	
Floodprone Width (ft)	NA	NA	NA	NA		NA		40	40	40	40		40		NA	NA	NA	NA		NA		40	40	40	40		40		NA	NA	NA	NA		NA	
Bankfull Mean Depth (ft)	0.5	0.3	0.3	0.2		0.3		0.3	0.3	0.2	0.2		0.2		0.6	0.6	0.6	0.6		0.4		0.5	0.4	0.3	0.3		0.4		0.4	0.4	0.3	0.2		0.3	
Bankfull Max Depth (ft)	0.8	0.5	0.6	0.7		0.5		0.5	0.6	0.6	0.6		0.7		1.1	1.2	1.3	1.3		1.2		0.8	0.7	0.8	0.8		0.8		0.9	0.8	0.7	0.7		0.7	
Bankfull Cross Sectional Area (ft ²)	2.4	2.4	2.4	2.4		2.4		1.9	1.9	1.9	1.9		1.9		3.4	3.4	3.4	3.4		3.4		3.7	3.7	3.7	3.7		3.7		3.3	3.3	3.3	3.3		3.3	
Bankfull Width/Depth Ratio	NA	NA	NA	NA		NA		20.9	17.1	46.5	64.7		48.2		NA	NA	NA	NA		NA		17.7	22.9	40.2	42.3		24.8		NA	NA	NA	NA		NA	
Bankfull Entrenchment Ratio	NA	NA	NA	NA		NA		6.3	7.0	4.3	3.7		4.1		NA	NA	NA	NA		NA		4.9	4.3	3.3	3.1		4.0		NA	NA	NA	NA		NA	
Low Bank Height (ft)	0.8	0.5	0.6	0.6		0.6		0.5	0.6	0.6	0.6		0.7		1.1	1.2	1.3	1.4		1.2		0.8	0.6	0.8	0.7		0.8		0.9	0.8	0.7	0.7		0.7	
Bankfull Bank Height Ratio*	1.00	1.00	1.00	0.86		1.05		1.00	1.00	1.00	1.00		0.99		1.00	1.00	1.00	1.07		1.02		1.00	0.86	1.00	0.88		1.02		1.00	1.00	1.00	1.00		1.05	
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)																																			
		C	Cross Se	ection 2	20 (Riffle	e)			(Cross S	ection	21 (Pool)			(Cross S	Section 2	22 (Riffl	e)															
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+														
Record elevation (datum) used																																	\square		
Bankfull Width (ft)	4.9	6.2	5.3	5.9		5.4		5.0	5.8	5.8	5.3		6.7		7.4	7.2	8.5	7.7		7.5															
Floodprone Width (ft)	40	40	40	40		40.0		NA	NA	NA	NA		NA		40	40	40	40		40															
Bankfull Mean Depth (ft)	0.4	0.3	0.4	0.3		0.3		0.6	0.5	0.5	0.6		0.5		0.4	0.4	0.3	0.4		0.4													\square		
Bankfull Max Depth (ft)	0.6	0.6	0.6	0.6		0.6		1.1	1.0	1.1	1.1		1.1		0.7	0.8	0.7	0.8		0.8															
Bankfull Cross Sectional Area (ft ²)	1.9	1.9	1.9	1.9		1.9		3.1	3.1	3.1	3.1		3.1		2.9	2.9	2.9	2.9		2.9															
Bankfull Width/Depth Ratio	12.6	20.2	14.8	18.5		15.7		NA	NA	NA	NA		NA		18.9	17.9	24.9	20.4		19.2													\square		
Bankfull Entrenchment Ratio	8.2	6.5	7.5	6.8		7.4		NA	NA	NA	NA		NA		5.4	5.6	4.7	5.2		5.3															
Low Bank Height (ft)		0.6	0.6	0.6		0.6		1.1	1.0	1.1	1.2		1.1		0.7	0.8	0.7	0.7		0.8															
Bankfull Bank Height Ratio*	1.00	1.00	1.00	1.11		1.02		1.00	1.00	1.00	1.06		0.94		1.00	1.00	1.00	0.88		0.99															
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)																																			

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary." *Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

_		
_		
-		
_		
_		

				Tab	ole 12	e. Me	onito	ring D	Data -	Dime	ensior	nal Me	orpho	ology	Sum	nary	(Dime	ensior	nal Pa	rame	ters -	- Cro	ss Se	ction	s)					
								Proje	ct Na	me/N	umbe	er (He	ron/1	00014	4) S	egme	ent/Re	each:	UT 6	(781 f	eet)									
		C	ross S	ection	23 (Po	ol)					ection				Í				25 (Po				C	ross S	ection	26 (Rif	fle)			
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Т	Т
Record elevation (datum) used																													T	Т
Bankfull Width (ft)	5.6	5.7	6.4	8.8		6.7		6.1	5.8	5.7	5.4		5.8		5.2	10.0	10.3	10.8		10.6		6.8	4.7	4.8	4.3		4.7			
Floodprone Width (ft)	NA	NA	NA	NA		NA		40	40	40	40		40		NA	NA	NA	NA		NA		40	40	40	40		40			
Bankfull Mean Depth (ft)	0.6	0.6	0.6	0.4		0.5		0.4	0.4	0.4	0.4		0.4		0.6	0.3	0.3	0.3		0.3		0.5	0.7	0.7	0.8		0.7			
Bankfull Max Depth (ft)	1.0	0.9	1.0	1.0		0.9		0.6	0.5	0.6	0.6		0.6		1.3	0.8	0.8	0.7		0.7		0.9	1.0	1.2	1.2		1.2			
Bankfull Cross Sectional Area (ft ²)	3.6	3.6	3.6	3.6		3.6		2.2	2.2	2.2	2.2		2.2		3.2	3.2	3.2	3.2		3.2		3.5	3.5	3.5	3.5		3.5			
Bankfull Width/Depth Ratio	NA	NA	NA	NA		NA		16.9	15.3	14.8	13.4		15.2		NA	NA	NA	NA		NA		13.2	6.3	6.6	5.3		6.3			
Bankfull Entrenchment Ratio	NA	NA	NA	NA		NA		6.6	6.9	7.0	7.5		7.0		NA	NA	NA	NA		NA		5.9	8.5	8.3	9.3		8.6			
Low Bank Height (ft)	1.0	0.9	1.0	1.1		0.9		0.6	0.7	0.6	0.6		0.6		1.3	0.6	0.7	0.6		0.6		0.9	1.4	1.5	1.2		1.1			
Bankfull Bank Height Ratio*	1.00	1.00	1.00	1.10		1.03		1.00	1.40	1.00	1.07		1.07		1.00	0.75	0.88	0.86		0.79		1.00	1.40	1.25	1.02		0.96			
Cross Sectional Area between end pins (ft ²)																														
d50 (mm)																														
Based on fixed baseline bankfull elevation ¹																														
Record elevation (datum) used																														
Bankfull Width (ft)																														
Floodprone Width (ft)																														
Bankfull Mean Depth (ft)																														
Bankfull Max Depth (ft)																														
Bankfull Cross Sectional Area (ft ²)																														
Bankfull Width/Depth Ratio																														
Bankfull Entrenchment Ratio																														
Low Bank Height (ft)																														
Bankfull Bank Height Ratio*																														
Cross Sectional Area between end pins (ft ²)																														
d50 (mm)																														

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

*Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

				Tal	ble 12	f. Mo						al Mo er (Her									eters - feet)	- Cros	ss Se	ction	s)										
		С	ross S	ection	27 (Po	ol)		Г ́				28 (Riff			Í			Section					C	oss Se	ection 3	30 (Rif	fle)			С	ross Se	ection	31 (Poo))	
Based on fixed baseline bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used																																			
Bankfull Width (ft)	7.1	11.4	12.4	12.5		12.6		7.8	6.9	7.5	7.0		7.6		4.1	4.1	4.1	4.1		4.8		6.2	5.6	6.3	6.2		6.2		5.3	6.1	5.8	5.8		6.4	
Floodprone Width (ft)		NA	NA	NA		NA		20	20	20	20		20		NA	NA	NA	NA		NA		10	11	11	11		11		NA	NA	NA	NA		NA	
Bankfull Mean Depth (ft)	0.9	0.6	0.5	0.5		0.5		0.4	0.4	0.4	0.4		0.4		0.8	0.8	0.8	0.8		0.7		0.4	0.4	0.4	0.4		0.4		0.6	0.5	0.5	0.5		0.5	
Bankfull Max Depth (ft)	1.5	1.1	0.9	1.0		1.0		0.6	1.1	0.9	1.1		1.0		1.1	1.3	1.2	1.2		1.3		0.5	0.5	0.5	0.6		0.6		1.0	0.7	0.7	0.7		0.8	
Bankfull Cross Sectional Area (ft ²)	6.3	6.3	6.3	6.3		6.3		3.0	3.0	3.0	3.0		3.0		3.4	3.4	3.4	3.4		3.4		2.3	2.3	2.3	2.3		2.3		3.0	3.0	3.0	3.0		3.0	
Bankfull Width/Depth Ratio		NA	NA	NA		NA		20.3		18.8	16.3		19.4		NA		NA	NA		NA		16.7		17.3	16.7		16.7		NA	NA	NA	NA		NA	
Bankfull Entrenchment Ratio		NA	NA	NA		NA		2.6	2.9	2.7	2.9		2.6		NA	NA	NA	NA		NA		1.6	2.0	1.7	1.8		1.8		NA	NA	NA	NA		NA	
Low Bank Height (ft)		0.8		0.9		0.9		0.6	1.1	0.9	1.1		0.9		1.1	1.2	1.2	-		1.3		0.5		0.5	0.6		0.6		1.0	0.6	0.8	0.8		0.7	
Bankfull Bank Height Ratio*	1.00	0.73	0.89	0.90		0.93		1.00	1.00	1.00	1.00		0.99		1.00	0.92	1.00	1.08		1.04		1.00	1.00	1.00	1.04		0.96		1.00	0.86	1.14	1.01		0.94	
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)																																			
					32 (Riffl	/						83 (Riffle	/																						
Based on fixed baseline bankfull elevation ¹		MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+																					
Record elevation (datum) used																																			
Bankfull Width (ft)		7.6	7.9	8.1		9		6.6	5.8	6.2	7.4		8.2																						
Floodprone Width (ft)		20	20	20		20		20	20	20	20		20																						
Bankfull Mean Depth (ft)		0.4	0.4	0.4		0.4		0.3	0.3	0.3	0.2		0.2																						
Bankfull Max Depth (ft)		0.8	0.8	0.9		0.8		0.5	0.6	0.6	0.6		0.5																						
Bankfull Cross Sectional Area (ft ²)		3.3	3.3	3.3		3.3		1.8	1.8	1.8	1.8		1.8																						
Bankfull Width/Depth Ratio		-	18.9	19.8		24.2		24.2	18.7	21.4			38.3																					I	
Bankfull Entrenchment Ratio		2.6	2.5	2.5		2.2		3.0	3.4	3.2	2.7		2.4																						
Low Bank Height (ft)		0.8	0.8	0.9		0.8		0.5	0.5	0.7	0.5		0.5																						
Bankfull Bank Height Ratio*	1.00	1.00	1.00	1.00		1.06		1.00	0.83	1.17	0.90		0.91																						
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)																																	$i \neg$. –	

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary." *Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

				Tab	ble 12g	g. Mo																- Cro	ss Se	ection	ıs)					
								Proje	ct Na	me/N	umbe	er (He	ron/1	00014	4) S	egme	ent/Re	each:	UT 8	(605 f	eet)									
		С	ross S	ection	34 (Riff	le)			С	ross S	ection	35 (Po	ol)			С	ross S	ection	36 (Riff	fle)			С	ross S	Section	n 37 (P	ool)			
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	5 MY	' +	
Record elevation (datum) used																														
Bankfull Width (ft)	6.5	5.2	4.8	5.3		5.9		7.5	6.9	7.1	6.4		6.0		9.3	9.0	9.3	9.7		9.9		9.5	8.7	10.5			9.7			
Floodprone Width (ft)	40	40	40	40		40		NA	NA	NA	NA		NA		20	20	20	20		20		NA	NA	NA	NA		NA			
Bankfull Mean Depth (ft)	0.4	0.5	0.5	0.5		0.4		0.5	0.6	0.6	0.6		0.7		0.4	0.4	0.4	0.4		0.4		0.8	0.8	0.7	0.8		0.7			
Bankfull Max Depth (ft)	0.7	0.7	0.8	0.7		0.7		0.9	1.0	0.9	0.9		1.0		0.7	0.7	0.8	0.8		0.9		1.6	1.6	1.6	1.6		1.6			
Bankfull Cross Sectional Area (ft ²)	2.6	2.6	2.6	2.6		2.6		4.1	4.1	4.1	4.1		4.1		3.7	3.7	3.7	3.7		3.7		7.2	7.2	7.2	7.2		7.2	_		
Bankfull Width/Depth Ratio	16.3	10.4	8.9	10.7		13.3		NA	NA	NA	NA		NA		23.4	21.9		25.5		26.4		NA	NA	NA	NA		NA			
Bankfull Entrenchment Ratio		7.7	8.3	7.6		6.7		NA	NA	NA	NA		NA		2.2	2.2	2.2	2.1		2.0		NA	NA	NA	NA		NA			
Low Bank Height (ft)		0.8	0.8	0.8		0.8		0.9	1.0	0.9	0.9		1.0		0.7	0.7	0.8	0.8		0.8		1.6	1.6	1.6	1.5		1.4			
Bankfull Bank Height Ratio*	1.00	1.14	1.00	1.14		1.18		1.00	1.00	1.00	1.01		1.00		1.00	1.00	1.00	1.07		0.92		1.00	1.00	1.00	0.94		0.89	1		
Cross Sectional Area between end pins (ft ²)																														
d50 (mm)																														
		-	-	-			_							_		_	-				_				_	_				
Based on fixed baseline bankfull elevation ¹																												┶		
Record elevation (datum) used																														
Bankfull Width (ft)																												┶		
Floodprone Width (ft)																														
Bankfull Mean Depth (ft)																												┶		
Bankfull Max Depth (ft)																														
Bankfull Cross Sectional Area (ft ²)																												┶		
Bankfull Width/Depth Ratio																												┶		
Bankfull Entrenchment Ratio																												┶		
Low Bank Height (ft)																					L						—	┶	—	<u> </u>
Bankfull Bank Height Ratio*																											<u> </u>	┶		
Cross Sectional Area between end pins (ft ²)																											<u> </u>	┶	┶	
d50 (mm)																														

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum based on the destination and the monitoring datum based on the destination and the monitoring datum based on the destination and the d

																							ata Su													
												Proj	ect N	ame/	Numb	ber (H	eron/	1000	14) - 3	Segm	ent/R	each:	: UT 1	(856	feet)						_					
Parameter			Base	eline					M	′-1					M	Y-2					M	Y- 3					M	Y- 4					MY	(- 5		
		I	_	_	1	1			1	_	_	_		_	1		1					1		_		1			1	1		1	_			
Dimension and Substrate - Riffle only		Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	${\rm SD}^4$	n		Mean	Med	Max	SD^4	n	Min	Mean	_	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n		Mean	Med		SD^4	n
Bankfull Width (ft)	8.3	11		13		4	9	13.2		14.7		4	10.7	13.4		17.7		4	12.4		13.4	16		4							8.3		13.8			4
Floodprone Width (ft)	25	100		100		4	25	100		100		4	25	100	<u> </u>	100		4			100	100		4					<u> </u>		25.0			100.0		4
Bankfull Mean Depth (ft)	0.4	0.5		0.6		4	0.3	0.4		0.6		4	0.26	0.37	<u> </u>	0.63		4	0.30		0.41	0.52		4							0.3		0.4	0.5		4
¹ Bankfull Max Depth (ft)	0.6	0.8		1.1		4	0.6	0.8		1		4	0.7	0.8	<u> </u>	1.1		4	0.62		0.82	1.04		4							0.6		0.8	1.1		4
Bankfull Cross Sectional Area (ft ²)	3.7	5.4		7.2		4	3.7	5.4		7.2		4	3.7	5.4		7.2		4	3.7		5.4	7.2		4							3.7		5.4	7.2		4
Width/Depth Ratio		18.7		36.7		4	20	28.7		45.1		4	18.1	34.7	<u> </u>	68.1		4	26.7		39.3	41.9		4					<u> </u>		18.5		28.9	57.4		4
Entrenchment Ratio	3	8.3		9.3		4	2.8	6.9		8.3		4	2.34	6.09	<u> </u>	8.77		4	2.01		6.74	7.68		4					<u> </u>		3.0		6.6	7.4		4
Low Bank Height (ft)	0.6	0.8		1.1		4	0.6	0.7		1		4	0.7	0.8	<u> </u>	1.1		4	0.62		0.82	1.04		4					<u> </u>		0.6		0.8	1.0		4
¹ Bank Height Ratio	1.0	1.0		1.0		4	0.9	1		1		4	1.0	1.0		1.0		4	0.9		0.9	1.0		4	_						0.9		1.0	1.1		4
Profile		1	-	-	1	1						_																								
Riffle Length (ft)		19	16	53	11	31																														
Riffle Slope (ft/ft)		0.01		0.05		31																														
Pool Length (ft)	6	23	20		12.9	34																														
Pool Max depth (ft)		1.6		2.1		4																														
Pool Spacing (ft)	25	34		68		34																														
Pattern	-	•	-		-	-	-	-																												
Channel Beltwidth (ft)	25	34		68												ļ																				
Radius of Curvature (ft)	17	25		85												Patterr	n data wi	l not tvr	pically b	ne collec	ted unle	ss visua	al data, d	imensio	nal data	or prof	ile data	indicate								
Rc:Bankfull width (ft/ft)	2	3		10													· data m		prod.i.j 2				om base		na dat		uulu	marcato								
Meander Wavelength (ft)		72		101																																
Meander Width Ratio	3	4		6																																
Additional Reach Parameters	_						_																													_
Rosgen Classification			С																																	_
Channel Thalweg length (ft)				56						_		_		_	_	_	_			_		_	_			_	_		_	_		_	_			
Sinuosity (ft)			1																																	
Water Surface Slope (Channel) (ft/ft)			0.0	087				_		_	_					_		_		_	_	_	_				_					_			_	
BF slope (ft/ft)	40	40	40	40						-		_					-				-	-	-					r	-	-		-				
³ Ri% / Ru% / P% / G% / S%	43	19	19	19			_																													
³ SC% / Sa% / G% / C% / B% / Be%																												—			<u> </u>			\vdash		
³ d16 / d35 / d50 / d84 / d95 /																			<u> </u>	1	1										<u> </u>					
² % of Reach with Eroding Banks			(0																											<u> </u>					
Channel Stability or Habitat Metric																															<u> </u>					
Biological or Other																																				

												E	xhibit	Tab	e 13b	. Mo	nitori	na Da	ata - S	trean	n Rea	ch Da	ata Su	mma	rv										—		
																							UT 3														
Parameter			Bas	eline					M	(-1						Y-2			<u> </u>	- <u>J</u>		Y- 3		<u></u>			М	Y- 4						MY- 5			
																						-															
Dimension and Substrate - Riffle only	Min	Mear	n Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mear	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Мах	SD	4 n	Ν	in Me	an M	ed M	ax	SD^4	n
Bankfull Width (ft)	7.7	7.7		7.7		1	7	7		7		1	7	7		7		1	7.4		7.4	7.4		1							7	.5	7.	.5 7	<i>.</i> 5		1
Floodprone Width (ft)	18	18		18		1	18	18		18		1	18	18		18		1	18		18	18		1							18	3.0	18	3.0 18	3.0		1
Bankfull Mean Depth (ft)	0.6	0.6		0.6		1	0.6	0.6		0.6		1	0.6	0.6		0.6		1	0.6		0.6	0.6		1							0	.6	0.	.6 0	.6		1
¹ Bankfull Max Depth (ft)	1	1		1		1	1.1	1.1		1.1		1	1	1		1		1	1.1		1.1	1.1		1							1	.1	1.	.1 1	.1		1
Bankfull Cross Sectional Area (ft ²)	4.5	4.5		4.5		1	4.5	4.5		4.5		1	4.5	4.5		4.5		1	4.5		4.5	4.5		1							4	.5	4.	.5 4	.5		1
Width/Depth Ratio	13.2	13.2		13.2		1	10.9	10.9		10.9		1	10.9	10.9		10.9	1	1	12.3		12.3	12.3		1							12	2.5	12	2.5 12	2.5		1
Entrenchment Ratio	2.3	2.3		2.3		1	2.6	2.6		2.6		1	2.6		2.6			1	2.4		2.4	2.4		1							2	.4	2.	.4 2	.4		1
Low Bank Height (ft)	1	1		1		1	1.1	1.1		1.1		1	1	1		1		1	1.1		1.1	1.1		1							1	.1	1.		.1		1
¹ Bank Height Ratio	1.0	1.0		1.0		1	1	1.0		1.0		1	1	1.0		1.0		1	1.1		1.1	1.1		1							0	.9	0.	.9 0	.9		1
Profile																																					
Riffle Length (ft)	4	11	10	19	4.3	14																															
Riffle Slope (ft/ft)	0.01	0.03	0.03	0.74		14																															
Pool Length (ft)	4	9	8	21	4.9	13																															
Pool Max depth (ft)	1	1	1	1	0	1																															
Pool Spacing (ft)	13	18		35		14																															
Pattern																																					
Channel Beltwidth (ft)	13	18		27																																	
Radius of Curvature (ft)	9	13		44																																	
Rc:Bankfull width (ft/ft)	2	3		10												Patter	n data w	ill not ty	pically b				l data, di om baseli		nal dat	a or prot	file data	Indicat	e								
Meander Wavelength (ft)		37		53																- Olg	, into a fit				-												
Meander Width Ratio	3	4		6																																	
Additional Reach Parameters	1																														_						
Rosgen Classification				24				_	_	_	_				_	_	_			_	_	_	_			_	_			_		_	_				
Channel Thalweg length (ft)				79									-						_												_						
Sinuosity (ft)				.15									_						-												_						
Water Surface Slope (Channel) (ft/ft)			0.0	176									-						-												_						
BF slope (ft/ft) ³ Ri% / Ru% / P% / G% / S%	55	45	45	45							-	-		<u> </u>	-	-	-	-		-	-					-	-	-	-	-		_	_				_
	55	15	15	15																															4		
³ SC% / Sa% / G% / C% / B% / Be%																													-					\perp	\rightarrow	$ \longrightarrow $	
³ d16 / d35 / d50 / d84 / d95 /																																					
² % of Reach with Eroding Banks				0																																	
Channel Stability or Habitat Metric																																					
Biological or Other																																					
Shaded cells indicate that these will typically not be	filled in	1																																			

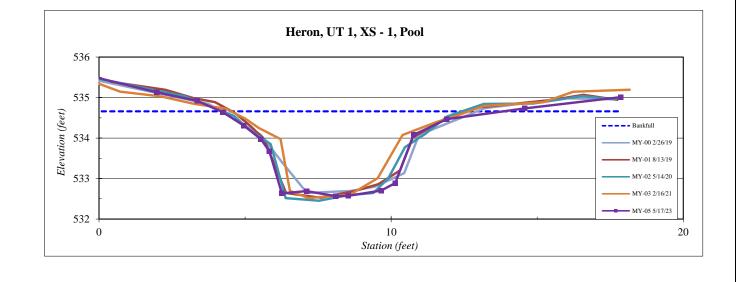
												E	xhibit	Tab	e 130	. Mo	nitori	na D	ata - S	Stream	m Rea	ch Da	ata Su	mma	rv											
																					nent/R															
Parameter			Bas	eline					M	Y-1						IY-2			1	3		Y-3		1.00			М	Y- 4					Μ	Y- 5		
Dimension and Substrate - Riffle only	Min	Mea	n Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mear	n Med	Max	SD ⁴	n	Min	Mear	n Med	Max	SD ⁴	n	Min	Mear	Med	Max	SD	'n	Mi	n Mea	n Med	Max	SD^4	n
Bankfull Width (ft)	6.5	7.3	;	8		2	7.4	7.7		7.9		2	10.6	11		11.3		2	7.8		7.9	7.9		2							8.0)	8.1	8.2		2
Floodprone Width (ft)	40	40		40		2	40	40		40		2	40	40		40		2	40		40	40		2							40.	0	40.0	40.0		2
Bankfull Mean Depth (ft)	0.3	0.4		0.5		2	0.3	0.4		0.4		2	0.2	0.3		0.3		2	0.3		0.4	0.4		2							0.3	3	0.4	0.4		2
¹ Bankfull Max Depth (ft)	0.5	0.7	·	0.8		2	0.6	0.7		0.8		2	0.5	0.7		0.8		2	0.5		0.7	0.8		2							0.7	7	0.7	0.8		2
Bankfull Cross Sectional Area (ft ²)	2.2	3		3.7		2	2.2	2.9		3.5		2	2.2	2.9		3.5		2	2.2		2.9	3.5		2							2.2	2	2.9	3.5		2
Width/Depth Ratio	17.3	18.3	3	19.2		2	17.8	21.4		24.9		2	36.5	43.8		51.1		2	17.7		23.2	28.7		2							18.	3	24.4	30.6		2
Entrenchment Ratio	5	5.6	;	6.2		2	5.1	5.2		5.4		2	3.5	3.7		3.8		2	5		5.1	5.1		2							4.9)	4.9	5.0		2
Low Bank Height (ft)	0.5	0.7	·	0.8		2	0.5			0.8		2	0.5	0.7		0.8		2			0.6	0.7		2							0.6	6	0.7	0.8		2
¹ Bank Height Ratio	1.0	1.0)	1.0		2	0.8	0.9		1		2	1.0	1.0		1.0		2	0.9		0.9	1		2							1.0)	1.0	1.0		2
Profile																																				
Riffle Length (ft)	4	9	9	20	3.5	23																														
Riffle Slope (ft/ft)	0	0.02		0.06		23																														
Pool Length (ft)	4	10	10	18	3.5	22																														
Pool Max depth (ft)	1.1	1.3		1.4		2																														
Pool Spacing (ft)	15	20		40		22																														
Pattern		-		-	_				-	_																										
Channel Beltwidth (ft)	15	20		30																																
Radius of Curvature (ft)	10	15		50												– – –											CI I.									
Rc:Bankfull width (ft/ft)	2	3		10												Patter	n data v	ill not ty	pically b	oe colle si	cted unle	shifts fro	al data, d om basel	imensio line	nal dat	a or pro	file data	indicat	e		_			_		4/
Meander Wavelength (ft)		43		60													_		-		giiniouni	-			_	-	-	_								
Meander Width Ratio	3	4		6																																
Additional Reach Parameters	-																																			
Rosgen Classification			-	; 4							_			_				_		_								_	_						_	
Channel Thalweg length (ft)				50															-												_					
Sinuosity (ft) Water Surface Slope (Channel) (ft/ft)				.15 195															-												_					
BF slope (ft/ft)			0.0	1195															-												-					
³ Ri% / Ru% / P% / G% / S%	40	17	10	17	r			-	-	-		<u> </u>		-	-	-	-	-	-	-	-	-	-			-	-	<u> </u>	-	—	-	-	-	-	1	
	48	17	18	17																																4
³ SC% / Sa% / G% / C% / B% / Be%		-	_										<u> </u>	<u> </u>					-			<u> </u>			<u> </u>				-		-	_				 '
³ d16 / d35 / d50 / d84 / d95 /													<u> </u>						<u> </u>												_					
² % of Reach with Eroding Banks				0			L												-												_					
Channel Stability or Habitat Metric																															_					
Biological or Other Shaded cells indicate that these will typically not be																																				

												E	chibit	Tabl	e 13d	. Mo	nitori	ng Da	ita - S	trear	m Rea	ch Da	ata Su	mma	rv											
																					nent/R															
Parameter			Bas	eline			Γ		M	(-1						Y-2			Ѓ			Y- 3		,	L (М	Y- 4			T		М	Y- 5		
							•																													
Dimension and Substrate - Riffle only	Min	Mea	an Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mear	Med	Max	SD ⁴	n	Min	Mean	n Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD	1 n	Min	Mear	n Med	Max	SD ⁴	n
Bankfull Width (ft)	4.9	6.9	9	8.1		4	5.7	6.7		9.2		4	5.3	9		12.2		4	5.9		7.5	12.7		4							5.4		8.6	9.9	<u> </u>	4
Floodprone Width (ft)	40	40)	40		4	40	40		40		4	40	40		40		4	40		40	40		4							40.0)	40.0	40.0	1	4
Bankfull Mean Depth (ft)	0.3	0.4	4	0.5		4	0.3	0.4		0.4		4	0.2	0.3		0.4		4	0.3		0.3	0.4		4							0.2		0.3	0.4		4
¹ Bankfull Max Depth (ft)	0.5	0.7	7	0.8		4	0.6	0.7		0.8		4	0.6	0.7		0.8		4	0.6		0.7	0.8		4							0.6		0.7	0.8		4
Bankfull Cross Sectional Area (ft ²)	1.9	2.4	4	3.7		4	1.9	2.4		3.7		4	1.9	2.4		3.7		4	1.9		2.4	3.7		4							1.9		2.4	3.7		4
Width/Depth Ratio	12.6	18.	3	20.9		4	17.1	19.1		22.9		4	14.8	32.6		46.5		4	18.5		24.6	43.2		4							15.7	7	22.0	48.2	1	4
Entrenchment Ratio	4.9	5.9	9	8.2		4	4.3	6.0		7.0		4	3.3	4.5		7.5		4	3.2		5.4	6.8		4							4.0		4.7	7.4	1	4
Low Bank Height (ft)	0.5	0.7	7	0.8		4	0.6	0.6		0.8		4	0.6	0.6		0.7		4	0.6		0.7	0.7		4							0.6		0.7	0.8		4
¹ Bank Height Ratio	1.0	1.0)	1.0		4	0.9	1.0		1.0		4	1	0.8		1		4	1		1	1.2		4							1.0		1.0	1.0		4
Profile																																				
Riffle Length (ft)	3	11	9	49	8.4	41																														
Riffle Slope (ft/ft)	0	0.0	3 0.03	0.05		41																														
Pool Length (ft)	4	12	2 10	59	8.5	41																														
Pool Max depth (ft)				1.1		4																														
Pool Spacing (ft)	15	20)	40		41																														
Pattern				-		-	-	-	-		-	-																						4		
Channel Beltwidth (ft)	15	20		30																											_			4		
Radius of Curvature (ft)	10	15		50												Dottor			aiaallu k		cted unles		المصفع ما	imonolo	بنماء امم		file dete	indiant				_		4		
Rc:Bankfull width (ft/ft)	2	3		10												Pallerr	i dala w	ii not ty	pically b		gnificant s				nai dati	a or pro	me data	indicat	e		_	_	_	4		
Meander Wavelength (ft)		43		60													_		_		5					_	_	-		_	_	_	_	4		
Meander Width Ratio	3	4		6																																
Additional Reach Parameters	_		F/	C 4															_												_					
Rosgen Classification Channel Thalweg length (ft)			-	52																																
Sinuosity (ft)				.15																											_					
Water Surface Slope (Channel) (ft/ft))256																																
BF slope (ft/ft)			0.0	200																											-					
³ Ri% / Ru% / P% / G% / S%	50	17	/ 17	16				1								1					T	I 1				T										
³ SC% / Sa% / G% / C% / B% / Be%				10						_																								 	<u> </u>	
³ d16 / d35 / d50 / d84 / d95 /														<u> </u>												-			+			+		┼──	┣──	-
² % of Reach with Eroding Banks				0									—	I	-										-			-				1	-	<u> </u>	<u> </u>	
Channel Stability or Habitat Metric				•									 																							
Biological or Other													 																							
Shaded cells indicate that these will typically not be	filled in	1																																		

												E	xhibit	t Tab	e 13e	. Mo	nitori	na Da	nta - S	Stream	n Rea	ch Da	ata Su	mma	rv											
																					nent/R															
Parameter			Bas	eline					M	Y-1						Y-2			T T	<u>J</u>		Y- 3		1	<u> </u>		M	Y- 4					М	Y- 5		
																						-												-		
Dimension and Substrate - Riffle only	Min	Mea	n Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mear	Med	Max	SD^4	n	Min	Mean	n Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	'n	Mir	Mear	n Med	Max	SD^4	n
Bankfull Width (ft)	6.1	6.5		6.8		2	4.7	5.3		5.8		2	4.8	5.3		5.7		2	4.3		4.8	5.4		2							4.7		5.3	5.8		2
Floodprone Width (ft)	40	40		40		2	40	40		40		2	40	40		40		2	40		40	40		2							40.)	40.0	40.0		2
Bankfull Mean Depth (ft)	0.4	0.4		0.5		2	0.4	0.6		0.7		2	0.4	0.6		0.7		2	0.4		0.6	0.8		2							0.4		0.6	0.7		2
¹ Bankfull Max Depth (ft)	0.6	0.8		0.9		2	0.5	0.8		1		2	0.6	0.9		1.2		2	0.6		0.9	1.2		2							0.6		0.9	1.2		2
Bankfull Cross Sectional Area (ft ²)	2.2	2.9		3.5		2	2.2	2.9		3.5		2	2.2	2.9		3.5		2	2.2		2.9	3.5		2							2.2		2.9	3.5		2
Width/Depth Ratio	13.2	15.1	1	16.9		2	6.3	10.8		15.3		2	6.6	10.7		14.8		2	5.3		9.4	13.4		2							6.3		10.8	15.2		2
Entrenchment Ratio	5.9	6.2		6.6		2	6.9	7.7		8.5		2	7	7.7		8.3		2	7.4		8.4	9.3		2							7.0		7.8	8.6		2
Low Bank Height (ft)	0.6	0.8		0.9		2	0.7	1.1		1.4		2	0.7	1.1		1.5		2	0.6		0.9	1.2		2							0.6		0.9	1.1		2
¹ Bank Height Ratio	1.0	1.0		1.0		2	1.4	1.4		1.4		2	1.1	1.2		1.3		2	1.0		1.0	1.1		2							1.0		1.0	1.1		2
Profile																																		1		
Riffle Length (ft)	2	10	7	47	8.8	33																														
Riffle Slope (ft/ft)	0	0.03	3 0.02	0.13		33																														
Pool Length (ft)	4	12	12	18	3.7	33																														
Pool Max depth (ft)	1	1.2		1.3		2																														
Pool Spacing (ft)	14	18		37		33																														
Pattern	-	-		-	-				_																											
Channel Beltwidth (ft)	14	18		37																																
Radius of Curvature (ft)	9	14		46												D-#											()									\square
Rc:Bankfull width (ft/ft)	2	3		10												Patteri	n data w	II not ty	pically b		cted unle gnificant				onal dat	a or pro	file data	indicate	e							\square
Meander Wavelength (ft)		39		55													_	_	-		grintearit	-														\perp
Meander Width Ratio	3	4		6																																
Additional Reach Parameters	_																																			
Rosgen Classification			-	; 4																																
Channel Thalweg length (ft)				81 .15															-												_					
Sinuosity (ft) Water Surface Slope (Channel) (ft/ft)				. 15)225															-												-					
BF slope (ft/ft)			0.0	1225															-												-					
³ Ri% / Ru% / P% / G% / S%	46	18	18	18								<u> </u>		T	T	T	T			T	T	<u> </u>	1			T	<u> </u>	T				T	1	1	T	
	40	10	10	10								-													_											+
³ SC% / Sa% / G% / C% / B% / Be% ³ d16 / d35 / d50 / d84 / d95 /		-	-										<u> </u>						-						<u> </u>						-	_				┢┻┙
													<u> </u>						<u> </u>						<u> </u>						-					
² % of Reach with Eroding Banks				0			I						I												I											
Channel Stability or Habitat Metric							<u> </u>						<u> </u>												<u> </u>											
Biological or Other Shaded cells indicate that these will typically not be	60 - 1 ·	_																																		

												E	xhibi	t Tab	le 13	f. Mo	nitori	na D	ata - S	Strea	m Rea	ich Da	ata Su	mma	rv											—
																					nent/R															
Parameter			Bas	eline					M	Y-1						1Y-2			T	eeg.		Y- 3		(М	Y- 4					M	Y- 5		
																						-														
Dimension and Substrate - Riffle only	Min	Mear	n Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mear	n Med	Max	SD ⁴	n	Min	Mea	an Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD	'n	Min	Mear	Med	Max	SD^4	n
Bankfull Width (ft)	6.2	6.6		7.8		4	5.6			7.6		4	6.2	6.9		7.9		4	6.2		7.5	9.2		4							6.2		7.9			4
Floodprone Width (ft)	10	20		20		4	11	20		20		4	11	20		20		4	11		20	20		4							11.0		20.0	20.0		4
Bankfull Mean Depth (ft)	0.3	0.4		0.5		4	0.3	0.4		0.4		4	0.3	0.4		0.4		4	0.2		0.4	0.4		4							0.2		0.4	0.4		4
¹ Bankfull Max Depth (ft)	0.5	0.6		0.7		4	0.5	0.7		1.1		4	0.5	0.7		0.9		4	0.6		0.8	1.1		4							0.5		0.7	1.0		4
Bankfull Cross Sectional Area (ft ²)	1.8	2.7		3.3		4	1.8	2.7		3.3		4	1.8	2.7		3.3		4	1.8		2.7	3.3		4							1.8		2.7	3.3		4
Width/Depth Ratio	12.8	18.5	;	24.2		4	13.6	16.7		18.7		4	17.3	18.8		21.4	Ļ	4	16.3	3	18.3	46.4		4							16.7		21.8	38.3		4
Entrenchment Ratio	1.6	2.8		3.1		4	2	2.8		3.4		4	1.7	2.6		3.2		4	1.8		2.3	2.9		4							1.8		2.3	2.6		4
Low Bank Height (ft)	0.5	0.6		0.7		4	0.5	0.7		1.1		4	0.5	0.7		0.9		4	0.5		0.8	1.1		4							0.5		0.7	0.9		4
¹ Bank Height Ratio	1.0	1.0		1.0		4	0.8	1		1		4	1.0	1.0		1.0		4	0.9		1	1.1		4							0.9		1.0	1.1		4
Profile																																				
Riffle Length (ft)	3	13	10	75	13	42																														
Riffle Slope (ft/ft)	0.01	0.03	0.03	0.06		42																														
Pool Length (ft)	3	9	9	14	2.6	41																														
Pool Max depth (ft)	1	1.1		1.5		3																														
Pool Spacing (ft)	16	21		42		42																														
Pattern																																				
Channel Beltwidth (ft)	16	21		32																																
Radius of Curvature (ft)	10	16		53																																
Rc:Bankfull width (ft/ft)	2	3		10												Patte	rn data v	vill not t	ypically		ected unle				onal data	a or prot	file data	indicat	e							
Meander Wavelength (ft)		45		64																	Igninoan	. 511113 11	oni base		-			-								
Meander Width Ratio	3	4		6																																
Additional Reach Parameters	-		0	. 4															-																	
Rosgen Classification			2	04																											_					
Channel Thalweg length (ft) Sinuosity (ft)				32 15															_												-					
Water Surface Slope (Channel) (ft/ft)	_		0.0																_												-					
BF slope (ft/ft)			0.0	200									-						_												-					
³ Ri% / Ru% / P% / G% / S%	60	13	14	13										T	T	—		T			1					<u> </u>	T -	T					T			
³ SC% / Sa% / G% / C% / B% / Be%	00	13	14	15																														—		
³ d16 / d35 / d50 / d84 / d95 /													-		+	+	+			+		+			<u> </u>				-			+		┣──	┣──	
² % of Reach with Eroding Banks)									-	1		1	1			1		1			-		I				-			L	L	
Channel Stability or Habitat Metric				-			 						-						-												+					
Biological or Other							<u> </u>						<u> </u>																							
Shaded cells indicate that these will typically not be	filled in																		_																	

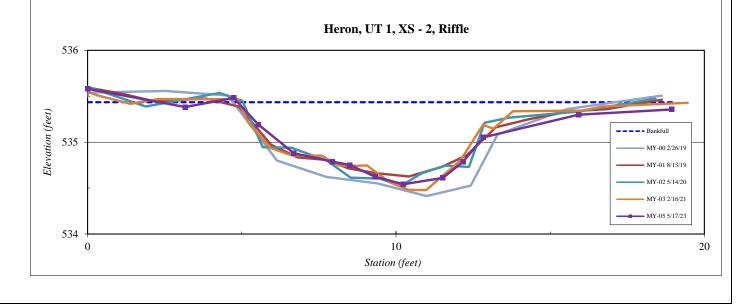
												E	chibit	Tabl	e 13g	. Mo	nitori	ng Da	ata - S	Stream	m Rea	ch Da	ata Su	mma	ry										—		
																					nent/R																
Parameter			Bas	eline					M	/-1						Y-2			Τ́	0		Y-3			L (М	Y- 4						MY- 5			-
Dimension and Substrate - Riffle only	Min	Mea	an Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mear	Med	Max	SD ⁴	n	Min	Mear	n Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD	4 n	M	n Me	an Me	ed Ma	хS	SD^4	n
Bankfull Width (ft)	6.5	7.9	9	9.3		2	5.2	7.1		9		2	4.8	7.1		9.3		2	5.3		7.5	9.7		2							5.	9	7.	9 9.9	3		2
Floodprone Width (ft)	20	30		40		2	20	30		40		2	20	30		40		2	20		30	40		2			1				20	0	30	.0 40.	.0		2
Bankfull Mean Depth (ft)	0.4	0.4	1	0.4		2	0.4	0.5		0.5		2	0.4	0.5		0.5		2	0.4		0.4	0.5		2							0.	4	0.	4 0.4	1		2
¹ Bankfull Max Depth (ft)	0.7	0.7	7	0.7		2	0.7	0.7		0.7		2	0.8	0.8		0.8		2	0.7		0.7	0.8		2							0.	7	0.	8 0.9	Э		2
Bankfull Cross Sectional Area (ft ²)	2.6	3.2	2	3.7		2	2.6	3.2		3.7		2	2.6	3.2		3.7	1	2	2.6		3.2	3.7		2							2.	6	3.	2 3.7	7		2
Width/Depth Ratio	16.3	19.8	8	23.4		2	10.4	16.1		21.9		2	8.9	16.1		23.4		2	10.7		18.1	25.5		2							13		19	.9 26.	4		2
Entrenchment Ratio	2.2	4.2	2	6.2		2	2.2	5		7.7		2	2.2	5.2		8.3		2	2.1		4.8	7.5		2							2.)	4.	4 6.7	7		2
Low Bank Height (ft)	0.7	0.7	7	0.7		2	0.7	0.8		0.8		2	0.8	0.8		0.8		2	0.8		0.8	0.8		2							0.	3	0.	8 0.8	3		2
¹ Bank Height Ratio	1.0	1.0)	1.0		2	1	1.1		1.1		2	1.0	1.0		1.0		2	1.1		1.1	1.1		2							0.	9	1.	1 1.2	2		2
Profile	-																																				
Riffle Length (ft)	5	11		19	3.4	23																															
Riffle Slope (ft/ft)	0.01	0.02	2 0.02	0.04	0.01	23																															
Pool Length (ft)		15		24	4.8	23																															
Pool Max depth (ft)				1.6		2																															
Pool Spacing (ft)	17	24		47		23																															
Pattern	-	-		-	-	-	-	-				-																									
Channel Beltwidth (ft)		24		36																													_				
Radius of Curvature (ft)	11	18		59												Dottor			niaelly h		cted unle		المصفعم ما		بنماء امم		file dete	indiant					_				
Rc:Bankfull width (ft/ft)	2	3		10												Pallen	n dala w	iii not ty	pically b		ignificant				nai dati	a or pro	me data	indicat	e	_			_				
Meander Wavelength (ft)		50		71											-		_	_	_		5			-		_	_	-		_			_				
Meander Width Ratio	3	4		6																																	
Additional Reach Parameters	-			24			-																								—						
Rosgen Classification Channel Thalweg length (ft)			-	, 4 05																																	
Sinuosity (ft)				.15																											+-			<u> </u>	—	—	—
Water Surface Slope (Channel) (ft/ft))138																															—		—
BF slope (tf/ft)			0.0	/100																															—	—	<u> </u>
³ Ri% / Ru% / P% / G% / S%	41	20	20	19											T	1	T			1	T								1						T	T	
³ SC% / Sa% / G% / C% / B% / Be%		- 20		10																														—	+	-+	
³ d16 / d35 / d50 / d84 / d95 /													┣──			-	-		-	+									+		╉─	_	_	+	╋	\rightarrow	
² % of Reach with Eroding Banks				0											1											1			1								
Channel Stability or Habitat Metric	-			•															-												+-						
Biological or Other																			-												+-						
Shaded cells indicate that these will typically not be	fillod in	n																													_ 						


Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 1, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Adams, Fleming, Perkinson, Smith

Station	Elevation
-0.2	535.5
2.0	535.1
3.4	534.9
4.2	534.6
5.0	534.3
5.5	534.0
5.8	533.7
6.3	532.6
7.1	532.7
8.1	532.6
8.5	532.6
9.7	532.7
10.1	532.9
10.8	534.1
11.9	534.5
14.6	534.7
17.9	535.0

Bankfull Elevation:	534.7
LTOB Elevation:	534.5
Bankfull Cross-Sectional Area:	10.5
Bankfull Width:	9.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.1
Low Bank Height:	1.9
Mean Depth at Bankfull:	1.1
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.91

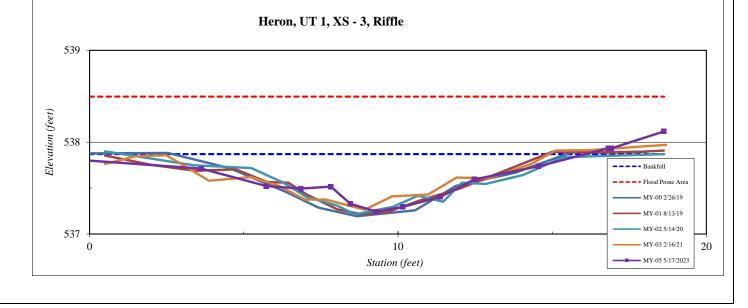
Stream Type C/E


Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 2, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Adams, Fleming, Perkinson, Smith

Station	Elevation
0.0	535.58
3.2	535.38
4.7	535.48
5.5	535.19
6.7	534.88
7.9	534.79
7.9 8.5	534.75
9.3	534.62
10.2	534.54
11.5	534.61
12.2	534.79
12.8	535.05
15.9	535.30
19.0	535.36

Bankfull Cross-Sectional Area:6Bankfull Width:14Flood Prone Area Elevation:53Flood Prone Width:10Max Depth at Bankfull:0Low Bank Height:0Mean Depth at Bankfull:0	35.4	5.	ion:	Bankfull Elevat
Bankfull Width:14Flood Prone Area Elevation:53Flood Prone Width:10Max Depth at Bankfull:0Low Bank Height:0Mean Depth at Bankfull:0	35.5	5.	n:	LTOB Elevation
Flood Prone Area Elevation:53Flood Prone Width:10Max Depth at Bankfull:0Low Bank Height:0Mean Depth at Bankfull:0	6.1	(Sectional Area:	Bankfull Cross-
Flood Prone Width:10Max Depth at Bankfull:0Low Bank Height:0Mean Depth at Bankfull:0	4.1	1	:	Bankfull Width
Max Depth at Bankfull:0Low Bank Height:0Mean Depth at Bankfull:0	36.3	5.	ea Elevation:	Flood Prone Ar
Low Bank Height: 0 Mean Depth at Bankfull: 0	0.00	10	idth:	Flood Prone Wi
Mean Depth at Bankfull: 0	0.9	(ankfull:	Max Depth at B
-	0.9	(ht:	Low Bank Heig
	0.4	(Bankfull:	Mean Depth at
W / D Ratio: 32	32.5	3		W / D Ratio:
Entrenchment Ratio: 7	7.1		Ratio:	Entrenchment l

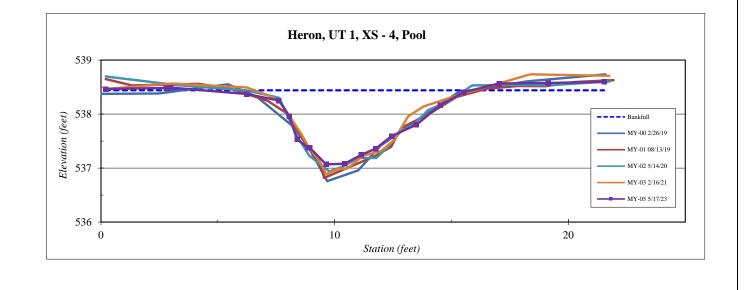
Stream Type C/E


Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 3, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Adams, Fleming, Perkinson, Smith

Station	Elevation
-0.1	537.30
3.6	537.21
5.7	537.02
6.8	537.00
7.8	537.02
8.5	536.83
9.3	536.74
10.2	536.80
11.4	536.91
12.5	537.09
14.6	537.24
16.8	537.43
16.9	537.43
18.6	537.62

SUMMARY DATA	
Bankfull Elevation:	537.4
LTOB Elevation:	537.3
Bankfull Cross-Sectional Area:	4.6
Bankfull Width:	16.2
Flood Prone Area Elevation:	538.0
Flood Prone Width:	100.0
Max Depth at Bankfull:	0.6
Low Bank Height:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	57.4
Entrenchment Ratio:	6.2
Bank Height Ratio:	0.89

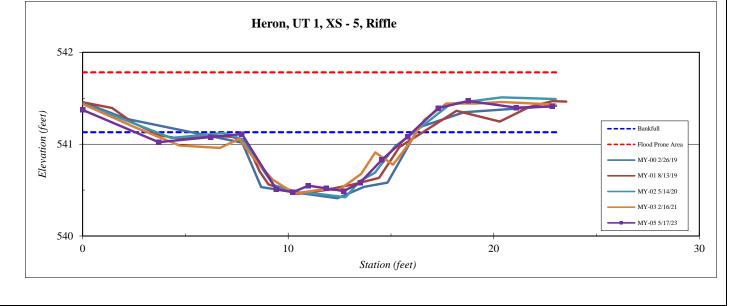
Stream Type C/E



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 4, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Adams, Fleming, Perkinson, Smith

Station	Elevation
0.2	538.5
2.8	538.5
3.0	538.5
6.2	538.4
7.6	538.3
8.1	538.0
8.4	537.5
8.9	537.4
8.9	537.4
9.6	537.1
10.4	537.1
11.1	537.2
11.8	537.4
12.4	537.6
13.5	537.8
14.5	538.2
15.5	538.4
17.0	538.6
19.1	538.6
21.5	538.6

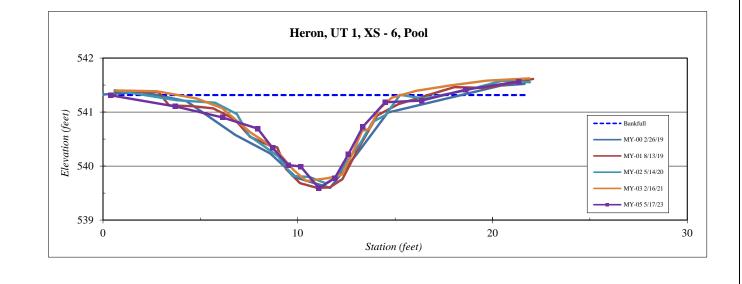
Bankfull Elevation:	538.4
LTOB Elevation:	538.5
Bankfull Cross-Sectional Area:	6.8
Bankfull Width:	11.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.04



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 5, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Adams, Fleming, Perkinson, Smith

Station	Elevation
0.0	541.37
3.7	541.02
6.2	541.08
7.8	541.11
9.4	540.51
10.2	540.48
11.0	540.55
11.9	540.52
12.7	540.49
13.5	540.58
14.6	540.83
15.8	541.08
17.3	541.39
18.8	541.47
21.1	541.40
22.8	541.41

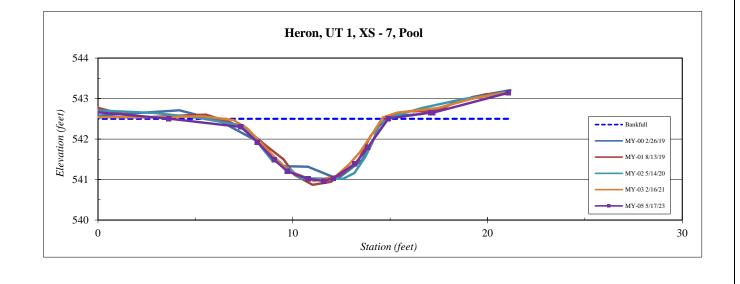
SUMMARY DATA	
Bankfull Elevation:	541.1
LTOB Elevation:	541.1
Bankfull Cross-Sectional Area:	3.7
Bankfull Width:	8.3
Flood Prone Area Elevation:	541.8
Flood Prone Width:	25.0
Max Depth at Bankfull:	0.7
Low Bank Height:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	18.5
Entrenchment Ratio:	3.0
Bank Height Ratio:	0.97



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 6, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Adams, Fleming, Perkinson, Smith

Station	Elevation
0.4	541.3
3.7	541.1
6.1	540.9
7.9	540.7
8.7	540.3
9.5	540.0
10.1	540.0
11.1	539.6
11.9	539.8
12.6	540.2
13.3	540.7
14.5	541.2
16.4	541.2
18.6	541.4
21.4	541.6

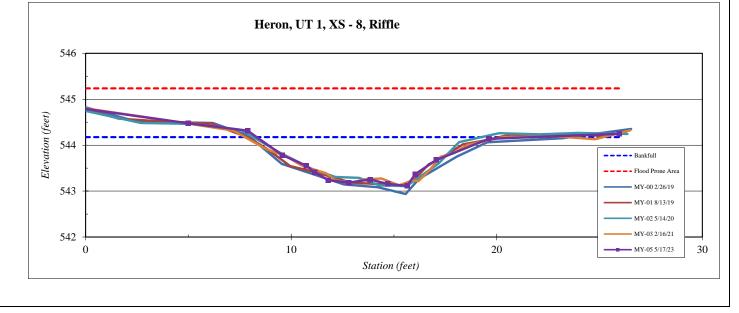
Bankfull Elevation:	541.3
LTOB Elevation:	541.2
Bankfull Cross-Sectional Area:	9.4
Bankfull Width:	17.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Low Bank Height:	1.6
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.92



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 7, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Adams, Fleming, Perkinson, Smith

Station	Elevation
-0.2	542.7
3.6	542.5
7.3	542.3
8.2	541.9
9.1	541.5
9.7	541.2
10.8	541.0
11.6	541.0
12.1	541.0
13.2	541.4
13.9	541.8
14.9	542.5
17.1	542.7
17.2	542.7
21.1	543.1

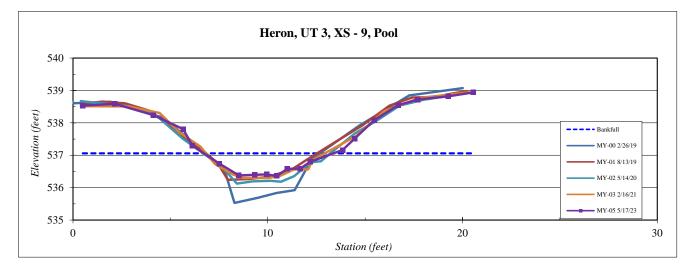
Bankfull Elevation:	542.5
LTOB Elevation:	542.5
Bankfull Cross-Sectional Area:	8.0
Bankfull Width:	11.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.5
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.00



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 8, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Adams, Fleming, Perkinson, Smith

Station	Elevation
-0.5	544.82
5.0	544.48
7.9	544.32
9.6	543.78
10.7	543.55
11.1	543.41
11.8	543.24
12.8	543.18
13.9	543.25
14.7	543.16
15.6	543.11 543.37
16.0	543.37
17.1	543.68
19.6	544.14
25.9	544.25

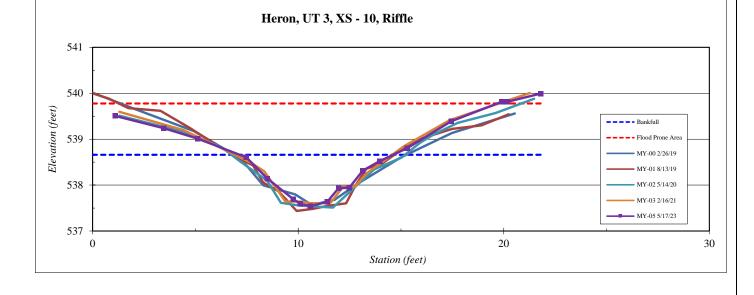
Bankfull Elevation:	544.2
LTOB Elevation:	544.1
Bankfull Cross-Sectional Area:	7.2
Bankfull Width:	13.5
Flood Prone Area Elevation:	545.2
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.1
Low Bank Height:	1.0
Mean Depth at Bankfull:	0.5
W / D Ratio:	25.3
Entrenchment Ratio:	7.4
Bank Height Ratio:	0.96



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 9, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Adams, Fleming, Perkinson, Smith

Station	Elevation
0.5	538.5
2.1	538.6
4.1	538.2
5.7	537.8
6.1	537.3
7.5	536.7
8.5	536.4
9.3	536.4
10.0	536.4
10.5	536.4
11.0	536.6
11.7	536.6
12.2	536.8
13.8	537.2
14.5	537.5
15.5	538.1
16.7	538.5
17.7	538.7
19.3	538.8
20.5	538.9

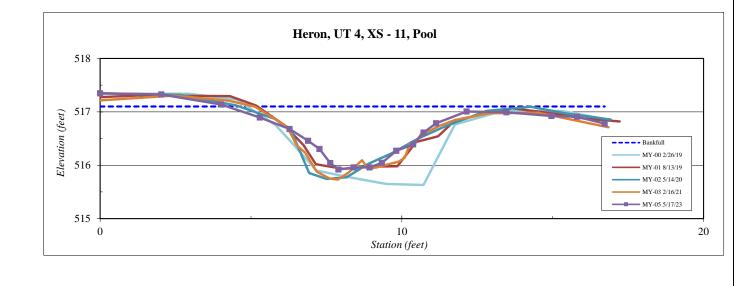
Bankfull Elevation:	537.1
LTOB Elevation:	537.2
Bankfull Cross-Sectional Area:	2.9
Bankfull Width:	6.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.7
Low Bank Height:	0.4
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.63


Sediment deposition in pool is natural and is exaggerated by the small size of the channel. This is not considered an area of concern.

Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 10, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Adams, Fleming, Perkinson, Smith

Station	Elevation
1.1	539.51
3.5	539.24
5.1	539.01
7.5	538.60
8.5	538.14
9.8	537.70
10.1	537.59
10.6	537.54
11.4	537.64
12.0	537.93
12.5	537.94
13.1	538.32
14.0	538.52
15.3	538.81
17.4	539.39
19.9	539.82
20.2	539.81
21.8	539.99

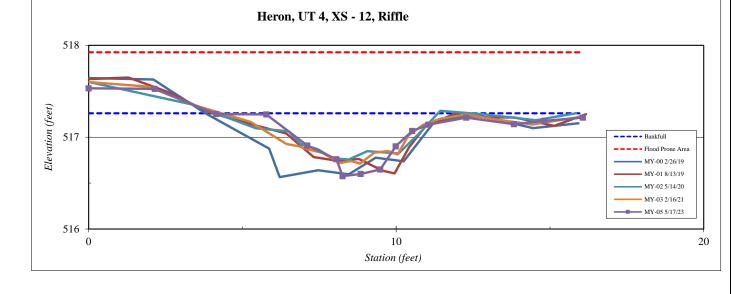
Bankfull Elevation:	538.7
LTOB Elevation:	538.6
Bankfull Cross-Sectional Area:	4.5
Bankfull Width:	7.5
Flood Prone Area Elevation:	539.8
Flood Prone Width:	18.0
Max Depth at Bankfull:	1.1
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	12.5
Entrenchment Ratio:	2.4
Bank Height Ratio:	0.95



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 11, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
0.0	517.3
2.0	517.3
4.0	517.1
5.3	516.9
6.3	516.7
6.9	516.5
7.3	516.3
7.6	516.0
7.9	515.9
8.4	516.0
8.9	516.0
9.3	516.0
9.8	516.3
10.4	516.4
10.7	516.6
11.1	516.8
12.1	517.0
13.5	517.0
15.0	516.9
15.8	516.9
16.7	516.8

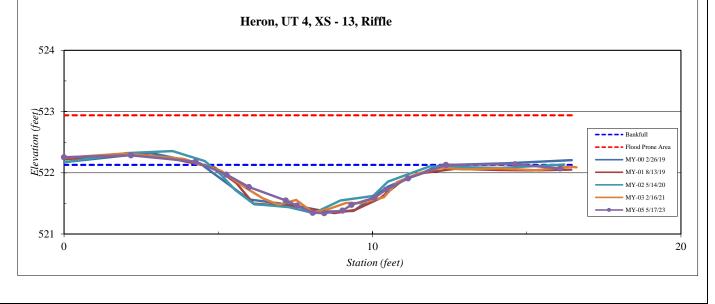
Bankfull Elevation:	517.1
LTOB Elevation:	517.0
Bankfull Cross-Sectional Area:	4.8
Bankfull Width:	7.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.92



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 12, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
0.0	517.53
2.1	517.53 517.25
4.1	517.25
5.8	517.25
7.1	516.91
8.1	516.76
8.3	516.58
8.8	516.60
9.5	516.65
10.0	516.90
10.5	517.07
11.0	517.14
12.3	517.21
13.8	517.14
14.8	517.18
16.1	517.21

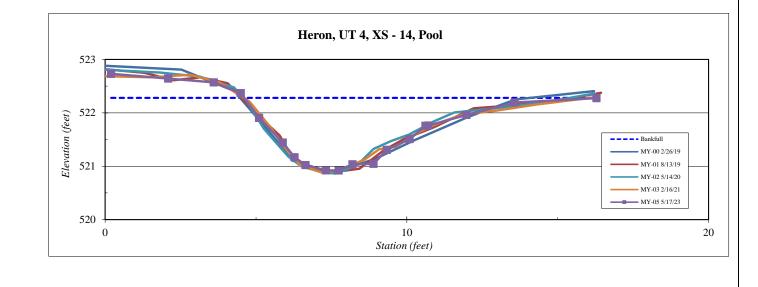
Bankfull Elevation:	517.3
LTOB Elevation:	517.2
Bankfull Cross-Sectional Area:	2.2
Bankfull Width:	8.2
Flood Prone Area Elevation:	517.9
Flood Prone Width:	40.0
Max Depth at Bankfull:	0.7
Low Bank Height:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	31.1
Entrenchment Ratio:	4.9
Bank Height Ratio:	0.96



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 13, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
0.0	522.25
2.2	522.29
4.3	522.18
5.3	521.97
6.0	521.77
7.2	521.55
7.6	521.47
8.1	521.35
8.4	521.34
9.0	521.38
9.3	521.48
10.1	521.59
10.4	521.72
11.2	521.91
12.4	522.13
14.6	522.14
16.1	522.07

SUMMARY DATA	
Bankfull Elevation:	522.1
LTOB Elevation:	522.1
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	8.0
Flood Prone Area Elevation:	522.9
Flood Prone Width:	40.0
Max Depth at Bankfull:	0.8
Low Bank Height:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	18.1
Entrenchment Ratio:	5.0
Bank Height Ratio:	0.97



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 14, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

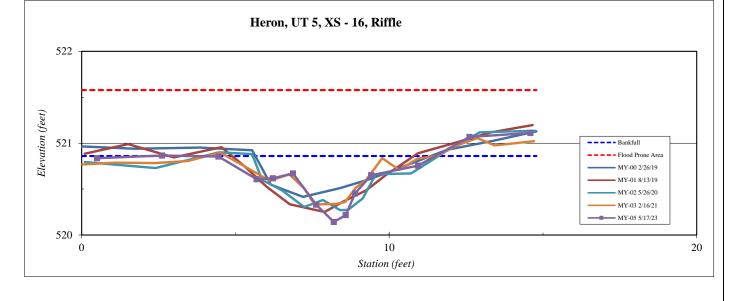
Station	Elevation
0.2	522.7
2.1	522.6
3.6	522.6
4.5	522.4
5.1	521.9
5.9	521.4
6.3	521.2
6.6	521.0
7.3	520.9
7.7	520.9
8.2	521.0
8.9	521.0
9.3	521.3
10.1	521.5
10.6	521.8
10.7	521.8
12.0	522.0
13.6	522.2
16.3	522.3

Bankfull Elevation:	522.3
LTOB Elevation:	522.3
Bankfull Cross-Sectional Area:	6.8
Bankfull Width:	11.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.02

Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 5, XS - 15, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
0.4	518.0
2.5	517.8
4.3	517.9
5.4	517.6
6.4	517.1
7.1	517.1
8.1	517.1
8.8	517.0
9.7	517.1
10.2	517.3
10.7	517.4
11.9	517.4
13.0	517.4
13.9	517.6
15.6	517.5

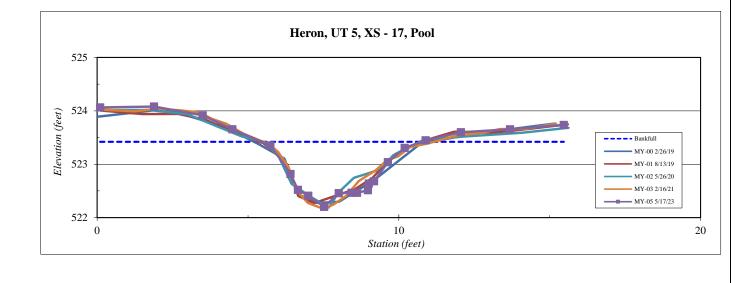
Bankfull Elevation:	517.5
LTOB Elevation:	517.6
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	8.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.5
Low Bank Height:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.05


Heron, UT 5, XS - 15, Pool

Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 5, XS - 16, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
0.5	520.84
2.6	520.87
4.5	520.85
5.7	520.61
6.2	520.62
6.9	520.67
7.6	520.33
8.2	520.14
8.6	520.22
8.9	520.45
9.4	520.65
10.9	520.76
12.6	521.07
14.6	521.11

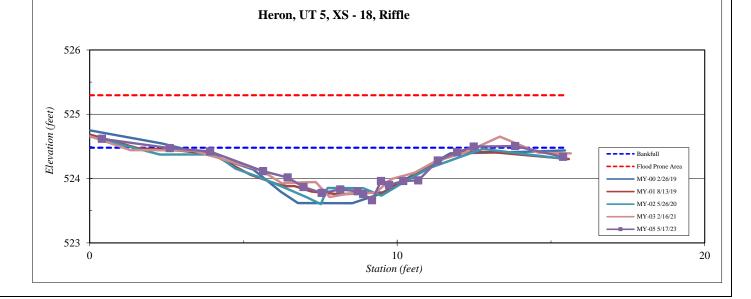
SUMMARY DATA	
Bankfull Elevation:	520.9
LTOB Elevation:	520.9
Bankfull Cross-Sectional Area:	1.9
Bankfull Width:	9.7
Flood Prone Area Elevation:	521.6
Flood Prone Width:	40.0
Max Depth at Bankfull:	0.7
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.2
W / D Ratio:	48.2
Entrenchment Ratio:	4.1
Bank Height Ratio:	0.99



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 5, XS - 17, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
0.1	524.1
1.9	524.1
3.5	523.9
4.5	523.7
5.7	523.4
6.4	522.8
6.7	522.5
7.0	522.4
7.5	522.2
8.0	522.5
8.4	522.5
8.6	522.5
9.0	522.5
9.0	522.6
9.2	522.7
9.6	523.0
10.2	523.3
10.9	523.4
12.1	523.6
13.7	523.7
15.5	523.7

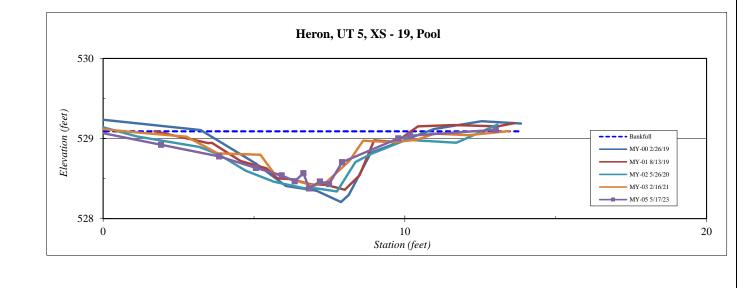
Bankfull Elevation:	523.4
LTOB Elevation:	523.4
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	5.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.02



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 5, XS - 18, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
0.4	524.62
2.6	524.47
3.9	524.42
5.6	524.12
6.4	524.02
7.0	523.87
7.5	523.78
8.1	523.83
8.7	523.80
8.9	523.76
9.2	523.66
9.5	523.96
9.7	523.90
10.2	523.96
10.7	523.97
11.3	524.28
12.0	524.41
12.5	524.50
13.8	524.51
15.4	524.34

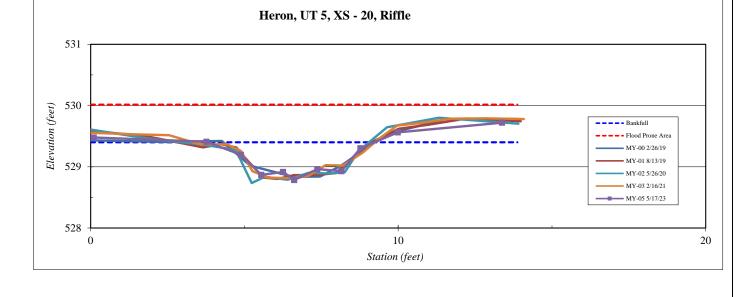
Bankfull Elevation:	524.5
LTOB Elevation:	524.5
Bankfull Cross-Sectional Area:	3.7
Bankfull Width:	9.9
Flood Prone Area Elevation:	525.3
Flood Prone Width:	40.0
Max Depth at Bankfull:	0.8
Low Bank Height:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	26.4
Entrenchment Ratio:	4.0
Bank Height Ratio:	1.02



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 5, XS - 19, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
-0.8	529.1
1.9	528.9
3.8	528.8
5.1	528.6
5.9	528.5
6.4	528.5
6.6	528.6
6.8	528.4
7.2	528.5
7.5	528.4
7.9	528.7
9.8	529.0
10.2	529.0
13.0	529.1

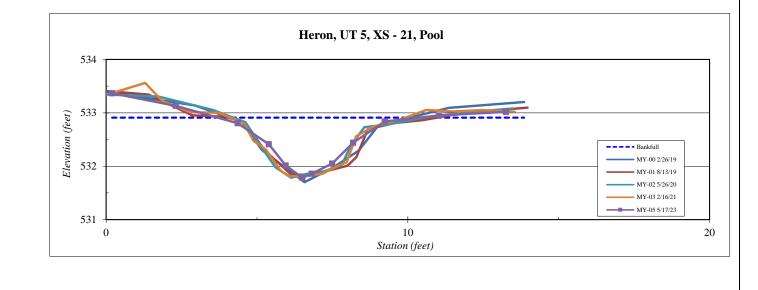
Bankfull Elevation:	529.1
LTOB Elevation:	529.1
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	12.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.7
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.05


Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 5, XS - 20, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
0.1	529.48
3.8	529.41
4.9	529.20
5.5	528.87
6.3	528.92
6.6	528.79
7.4	528.96
8.2	528.93
8.8	529.30
10.0	529.56
13.4	529.72

Bankfull Elevation:	529.4
LTOB Elevation:	529.4
Bankfull Cross-Sectional Area:	1.9
Bankfull Width:	5.4
Flood Prone Area Elevation:	530.0
Flood Prone Width:	40.0
Max Depth at Bankfull:	0.6
Low Bank Height:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	15.7
Entrenchment Ratio:	7.4
Bank Height Ratio:	1.02

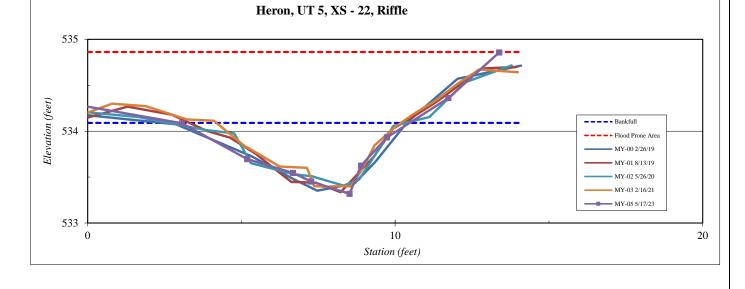
Stream Type



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 5, XS - 21, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
0.2	533.4
2.3	533.1
4.4	532.8
5.4	532.4
6.0	532.0
6.5	531.8
6.8	531.9
7.5	532.0
8.2	532.4
9.2	532.8
11.0	533.0
13.3	533.0

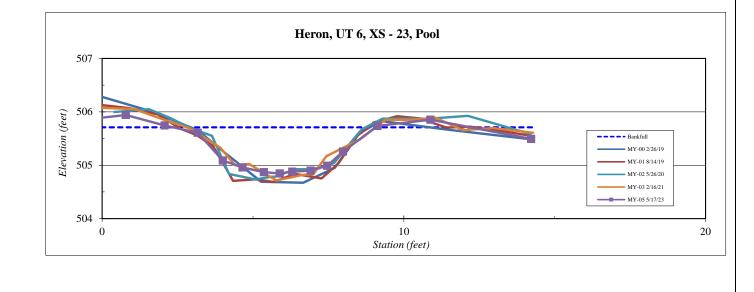
Bankfull Elevation:	532.9
LTOB Elevation:	532.8
Bankfull Cross-Sectional Area:	3.1
Bankfull Width:	6.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.1
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.94



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 5, XS - 22, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Fleming

Station	Elevation
-0.5	534.30
3.1	534.09
5.2	533.70
6.7	533.55
7.3	533.45
8.5	533.32
8.9	533.63
9.7	533.93
11.7	534.36
13.4	534.86

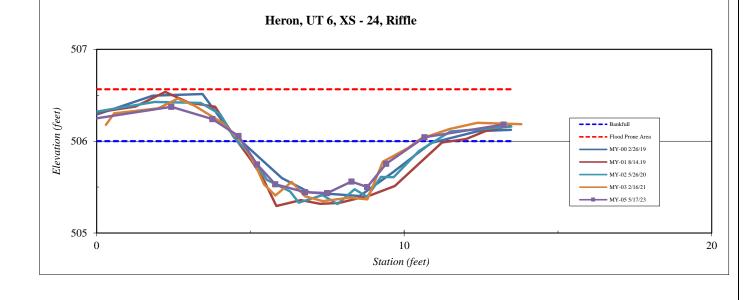
Bankfull Cross-Sectional Area:2.9Bankfull Width:7.5	Bankfull Elevation:	534.1
Bankfull Width: 7.5 Flood Prone Area Elevation: 534.9 Flood Prone Width: 40.0 Max Depth at Bankfull: 0.8 Low Bank Height: 0.8 Mean Depth at Bankfull: 0.4 W / D Ratio: 19.2	LTOB Elevation:	534.1
Flood Prone Area Elevation: 534.9 Flood Prone Width: 40.0 Max Depth at Bankfull: 0.8 Low Bank Height: 0.8 Mean Depth at Bankfull: 0.4 W / D Ratio: 19.2	Bankfull Cross-Sectional Area:	2.9
Flood Prone Width: 40.0 Max Depth at Bankfull: 0.8 Low Bank Height: 0.8 Mean Depth at Bankfull: 0.4 W / D Ratio: 19.2	Bankfull Width:	7.5
Max Depth at Bankfull: 0.8 Low Bank Height: 0.8 Mean Depth at Bankfull: 0.4 W / D Ratio: 19.2	Flood Prone Area Elevation:	534.9
Low Bank Height: 0.8 Mean Depth at Bankfull: 0.4 W / D Ratio: 19.2	Flood Prone Width:	40.0
Mean Depth at Bankfull:0.4W / D Ratio:19.2	Max Depth at Bankfull:	0.8
W / D Ratio: 19.2	Low Bank Height:	0.8
	Mean Depth at Bankfull:	0.4
Entrenchment Ratio: 5.4	W / D Ratio:	19.2
	Entrenchment Ratio:	5.4



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 6, XS - 23, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
-0.6	505.9
0.8	505.9
2.1	505.7
3.2	505.6
4.0	505.1
4.7	505.0
5.4	504.9
5.9	504.8
6.3	504.9
6.9	504.9
7.5	505.0
8.0	505.3
9.1	505.7
10.9	505.9
14.2	505.5

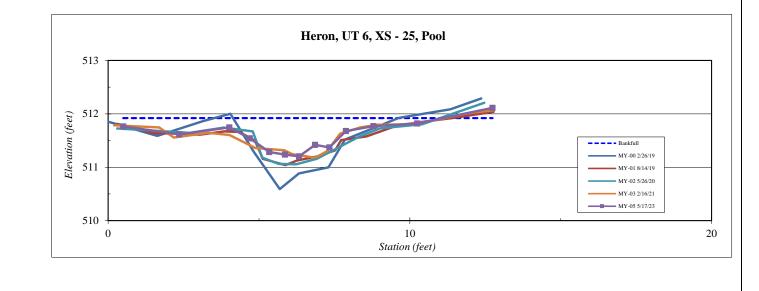
Bankfull Elevation:	505.7
LTOB Elevation:	505.7
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	6.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Low Bank Height:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.03

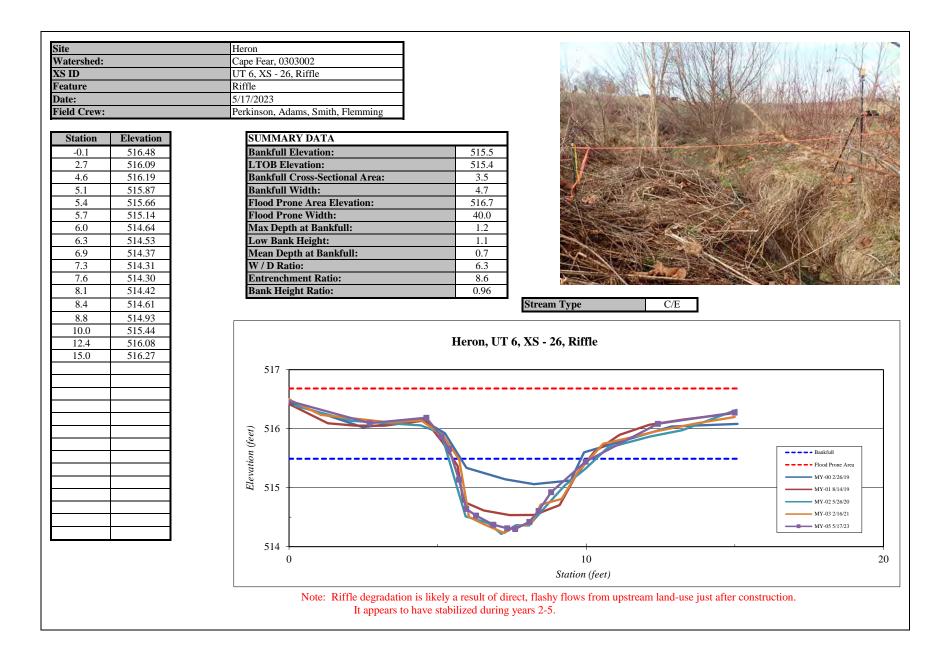


Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 6, XS - 24, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
-0.3	506.23
2.4	506.37
3.8	506.24
4.6	506.06
5.2	505.75
5.8	505.53
6.8	505.45
7.5	505.44
8.3	505.56
8.8	505.50
9.4	505.75
10.7	506.04
13.2	506.18

Max Depth at Bankfull: 0.6 Low Bank Height: 0.6 Mean Depth at Bankfull: 0.4 W / D Ratio: 15.2	Bankfull Elevation:	506.0
Bankfull Width: 5.8 Flood Prone Area Elevation: 506.6 Flood Prone Width: 40.0 Max Depth at Bankfull: 0.6 Low Bank Height: 0.6 Mean Depth at Bankfull: 0.4 W / D Ratio: 15.2	LTOB Elevation:	506.0
Flood Prone Area Elevation: 506.6 Flood Prone Width: 40.0 Max Depth at Bankfull: 0.6 Low Bank Height: 0.6 Mean Depth at Bankfull: 0.4 W / D Ratio: 15.2	Bankfull Cross-Sectional Area:	2.2
Flood Prone Width: 40.0 Max Depth at Bankfull: 0.6 Low Bank Height: 0.6 Mean Depth at Bankfull: 0.4 W / D Ratio: 15.2	Bankfull Width:	5.8
Max Depth at Bankfull: 0.6 Low Bank Height: 0.6 Mean Depth at Bankfull: 0.4 W / D Ratio: 15.2	Flood Prone Area Elevation:	506.6
Low Bank Height: 0.6 Mean Depth at Bankfull: 0.4 W / D Ratio: 15.2	Flood Prone Width:	40.0
Mean Depth at Bankfull: 0.4 W / D Ratio: 15.2	Max Depth at Bankfull:	0.6
W / D Ratio: 15.2	Low Bank Height:	0.6
	Mean Depth at Bankfull:	0.4
Entrenchment Ratio: 7.0	W / D Ratio:	15.2
	Entrenchment Ratio:	7.0




Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 6, XS - 25, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

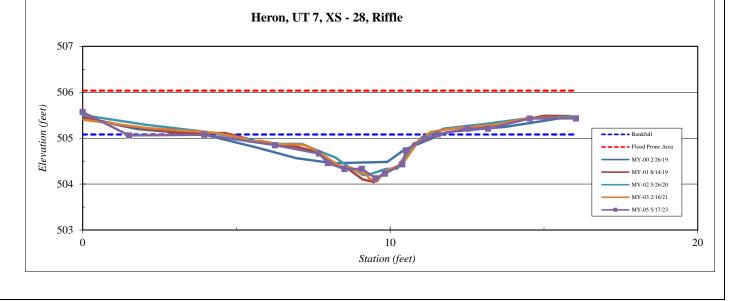
Station	Elevation
0.5	511.8
2.4	511.6
4.0	511.7
4.7	511.5
5.3	511.3
5.9	511.2
6.3	511.2
6.9	511.4
7.3	511.4
7.9	511.7
8.8	511.8
10.2	511.8
12.7	512.1

Bankfull Elevation:	511.9
LTOB Elevation:	511.8
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	10.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.7
Low Bank Height:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.79

Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 7, XS - 27, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
0.0	504.1
1.6	504.1
3.3	503.9
5.0	503.7
5.8	503.5
6.2	503.2
6.7	503.2
7.3	503.2
7.8	503.2
8.5	503.2
9.0	503.2
9.8	503.3
10.5	503.3
10.6	503.5
11.4	503.8
11.9	503.9
13.0	504.2
13.9	504.3
15.4	504.3
16.2	504.5

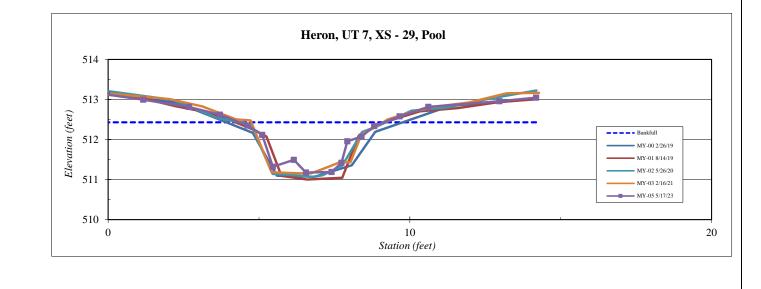
SUMMARY DATA	
Bankfull Elevation:	504.1
LTOB Elevation:	504.1
Bankfull Cross-Sectional Area:	6.3
Bankfull Width:	12.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Low Bank Height:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.93


Note: The sediment deposition in this pool occurred shortly after construction and has stabilized during Years 1-5. It is not expected to lead to further instability.

Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 7, XS - 28, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
0.0	505.57
1.5	505.06
4.0	505.08
6.3	504.85
7.7	504.66
8.0	504.46
8.5	504.33
9.1	504.33
9.5	504.13
9.8	504.23
10.4	504.43
10.5	504.74
11.1	504.99
11.5	505.08
12.5	505.21
13.2	505.21
14.5	505.43
16.0	505.43

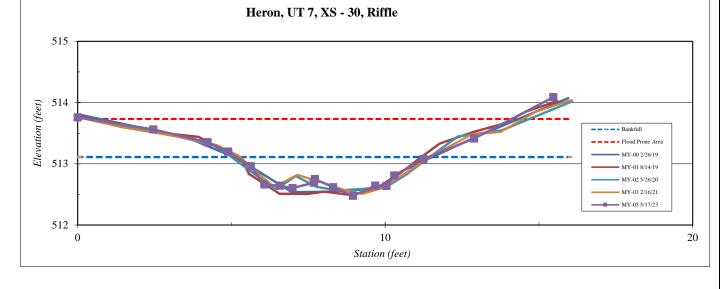
Bankfull Elevation:	505.1
LTOB Elevation:	505.1
Bankfull Cross-Sectional Area:	3.0
Bankfull Width:	7.6
Flood Prone Area Elevation:	506.0
Flood Prone Width:	20.0
Max Depth at Bankfull:	1.0
Low Bank Height:	0.9
Mean Depth at Bankfull:	0.4
W / D Ratio:	19.4
Entrenchment Ratio:	2.6
Bank Height Ratio:	0.99



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 7, XS - 29, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
-0.1	513.1
1.2	513.0
2.7	512.8
3.7	512.6
4.6	512.3
5.1	512.1
5.5	511.3
6.2	511.5
6.6	511.2
7.4	511.2
7.7	511.4
7.9	512.0
8.4	512.1
8.8	512.3
9.7	512.6
10.6	512.8
13.0	513.0
14.2	513.0

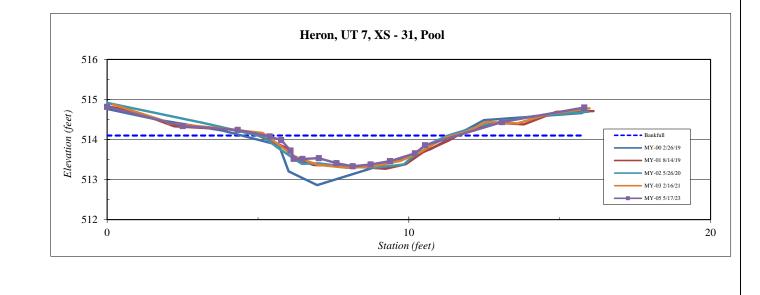
Bankfull Elevation:	512.4
LTOB Elevation:	512.5
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	4.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.04


Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 7, XS - 30, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
0.0	513.76
2.5	513.56
4.2	513.35
4.9	513.20
5.6	512.96
6.1	512.66
6.6	512.64
7.0	512.60
7.7	512.69
7.7	512.75
8.3	512.62
9.0	512.48
9.7	512.65
10.0	512.64
10.3	512.81
11.2	513.08
12.9	513.41
15.5	514.09

SUMMARY DATA	
Bankfull Elevation:	513.1
LTOB Elevation:	513.1
Bankfull Cross-Sectional Area:	2.3
Bankfull Width:	6.2
Flood Prone Area Elevation:	513.7
Flood Prone Width:	11.0
Max Depth at Bankfull:	0.6
Low Bank Height:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	16.7
Entrenchment Ratio:	1.8
Bank Height Ratio:	0.96

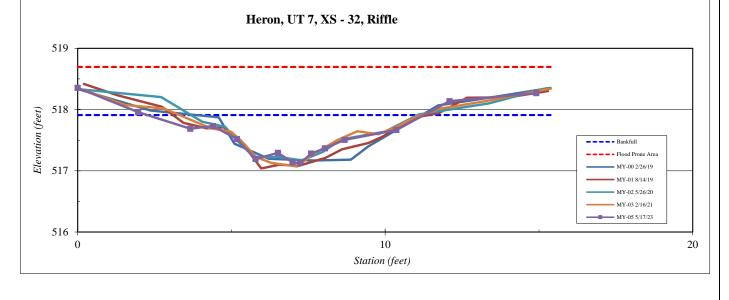
. .



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 7, XS - 31, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
0.0	514.8
2.5	514.3
4.3	514.2
5.4	514.1
5.8	514.0
6.1	513.7
6.2	513.5
6.5	513.5
7.0	513.5
7.6	513.4
8.1	513.3
8.7	513.4
9.4	513.5
10.2	513.7
10.5	513.9
13.1	514.4
15.8	514.8

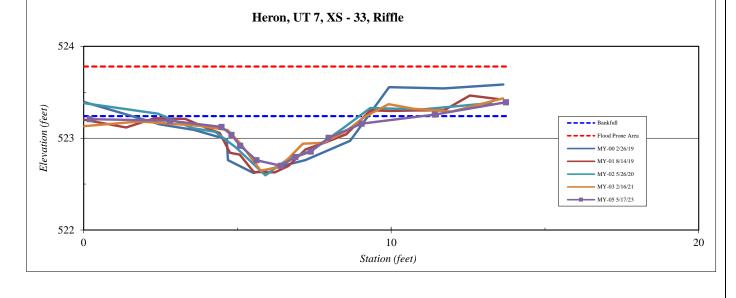
Bankfull Elevation:	514.1
LTOB Elevation:	514.1
Bankfull Cross-Sectional Area:	3.0
Bankfull Width:	6.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.94



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 7, XS - 32, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
0.0	518.36
2.0	517.96
3.7	517.69
4.4	517.73
5.2	517.52
5.8	517.19
6.5	517.29
7.0	517.14
7.2	517.12
7.6	517.28
8.0	517.37
8.7	517.51
10.4	517.67
12.1	518.14
14.9	518.27

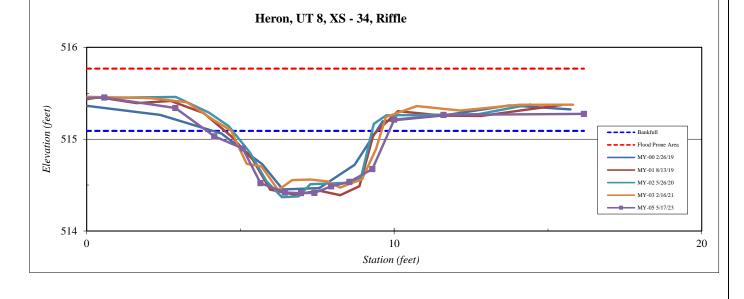
Bankfull Elevation:	517.9
LTOB Elevation:	518.0
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	9.0
Flood Prone Area Elevation:	518.7
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.8
Low Bank Height:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	24.2
Entrenchment Ratio:	2.2
Bank Height Ratio:	1.06



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 7, XS - 33, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
0.2	523.21
2.8	523.19
4.5	523.12
4.8	523.04
5.1	522.92
5.6	522.76
6.4	522.70
6.9	522.79
7.4	522.86
8.0	523.00
9.0	523.16
11.4	523.26
13.7	523.39

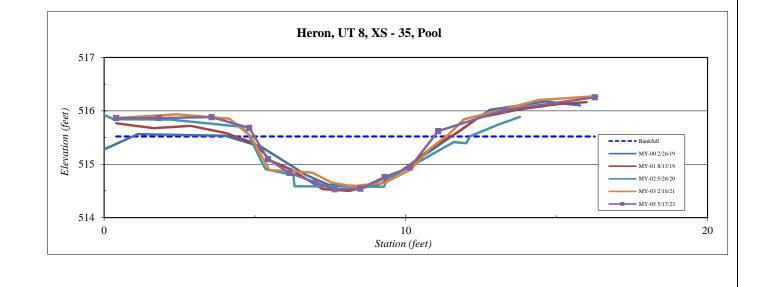
Bankfull Elevation:	523.2
LTOB Elevation:	523.2
Bankfull Cross-Sectional Area:	1.8
Bankfull Width:	8.2
Flood Prone Area Elevation:	523.8
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.5
Low Bank Height:	0.5
Mean Depth at Bankfull:	0.2
W / D Ratio:	38.3
Entrenchment Ratio:	2.4



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 8, XS - 34, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
-2.9	515.42
0.6	515.45
2.9	515.34
4.2	515.03
5.1	514.90
5.7	514.52
6.4	514.42
7.0	514.41
7.4	514.42
8.0	514.49
8.5	514.54
9.3	514.67
10.0	515.21
11.6	515.26
16.2	515.28

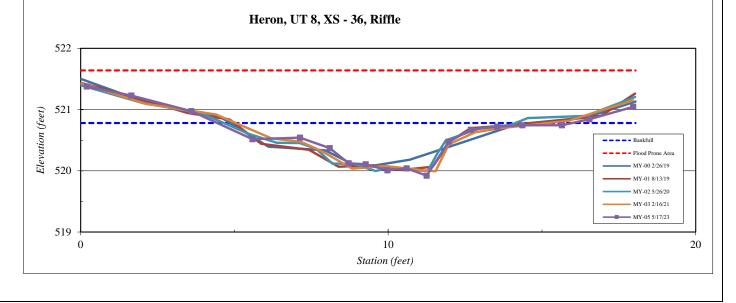
515.2
2.6
5.9
515.8
40.0
0.7
0.8
0.4
13.3
6.7



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 8, XS - 35, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
0.4	515.9
1.8	515.9
3.6	515.9
4.8	515.7
5.4	515.1
6.1	514.8
7.0	514.7
7.6	514.5
8.5	514.5
9.3	514.8
10.1	514.9
11.1	515.6
13.3	516.0
16.3	516.3

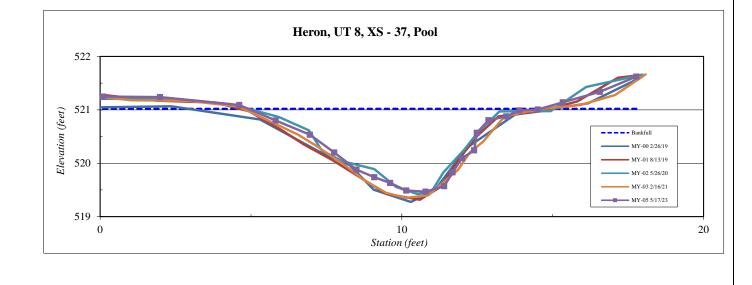
Bankfull Elevation:	515.5
LTOB Elevation:	515.5
Bankfull Cross-Sectional Area:	4.1
Bankfull Width:	6.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Low Bank Height:	1.0
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.00



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 8, XS - 36, Riffle
Feature	Riffle
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
0.2	521.38
1.6	521.23
3.6	520.97
5.6	520.52
7.1	520.54
8.1	520.37
8.7	520.12
9.3	520.11
10.0	520.01
10.6	520.04
11.3	519.92
12.0	520.48
12.7	520.67
13.5	520.72
14.4	520.74
15.6	520.74
16.5	520.84
18.0	521.04

Bankfull Elevation:	520.8
LTOB Elevation:	520.7
Bankfull Cross-Sectional Area:	3.7
Bankfull Width:	9.9
Flood Prone Area Elevation:	521.6
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.9
Low Bank Height:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	26.4
Entrenchment Ratio:	2.0
Bank Height Ratio:	0.96



Site	Heron
Watershed:	Cape Fear, 0303002
XS ID	UT 8, XS - 37, Pool
Feature	Pool
Date:	5/17/2023
Field Crew:	Perkinson, Adams, Smith, Flemming

Station	Elevation
0.1	521.2
2.0	521.2
4.6	521.1
5.8	520.8
7.0	520.5
7.8	520.2
8.5	519.9
9.1	519.7
9.6	519.6
10.1	519.5
10.8	519.5
11.4	519.6
11.7	519.8
12.0	520.1
12.4	520.2
12.5	520.6
12.9	520.8
13.5	520.9
13.9	521.0
14.5	521.0
15.3	521.1
16.6	521.34
17.8	521.622

LTOB Elevation:520.9Bankfull Cross-Sectional Area:7.2Bankfull Width:9.7Flood Prone Area Elevation:NAFlood Prone Width:NAMax Depth at Bankfull:1.6Low Bank Height:1.4Mean Depth at Bankfull:0.7W / D Ratio:NAEntrenchment Ratio:NA	Bankfull Elevation:	521.0
Bankfull Width:9.7Flood Prone Area Elevation:NAFlood Prone Width:NAMax Depth at Bankfull:1.6Low Bank Height:1.4Mean Depth at Bankfull:0.7W / D Ratio:NA	LTOB Elevation:	520.9
Flood Prone Area Elevation:NAFlood Prone Width:NAMax Depth at Bankfull:1.6Low Bank Height:1.4Mean Depth at Bankfull:0.7W / D Ratio:NA	Bankfull Cross-Sectional Area:	7.2
Flood Prone Width:NAMax Depth at Bankfull:1.6Low Bank Height:1.4Mean Depth at Bankfull:0.7W / D Ratio:NA	Bankfull Width:	9.7
Max Depth at Bankfull:1.6Low Bank Height:1.4Mean Depth at Bankfull:0.7W / D Ratio:NA	Flood Prone Area Elevation:	NA
Low Bank Height:1.4Mean Depth at Bankfull:0.7W / D Ratio:NA	Flood Prone Width:	NA
Mean Depth at Bankfull:0.7W / D Ratio:NA	Max Depth at Bankfull:	1.6
W / D Ratio: NA	Low Bank Height:	1.4
	Mean Depth at Bankfull:	0.7
Entrenchment Ratio: NA	W / D Ratio:	NA
	Entrenchment Ratio:	NA

Appendix E. Hydrology Data

Tables 14A-J. Channel Evidence Stream Gauge Graphs Table 15. Verification of Bankfull Events Table 16. Groundwater Hydrology Data Groundwater Gauge Graphs Soil Temperature Graph Figure E-1. 30-70 Percentile Graph for Rainfall

Table 14A. UT1 Channel Evidence

UT1 Channel Evidence	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	103	162	289	89	237
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					

Table 14B. UT2 Channel Evidence

UT2 Channel Evidence	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	85	126	116	61	110
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					

Table 14C. UT3 Channel Evidence

UT3 Channel Evidence		Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	142	166	120	131	73
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport		Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					

Table 14D. UT5 Downstream Channel Evidence

UT5 Downstream Channel Evidence		Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	134	152	135	130	154
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport		Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow		Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)		Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems		Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					

UT5 Upstream Channel Evidence		Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	167	158	60	201	165
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport		Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)		Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					

Table 14E. UT5 Upstream Channel Evidence

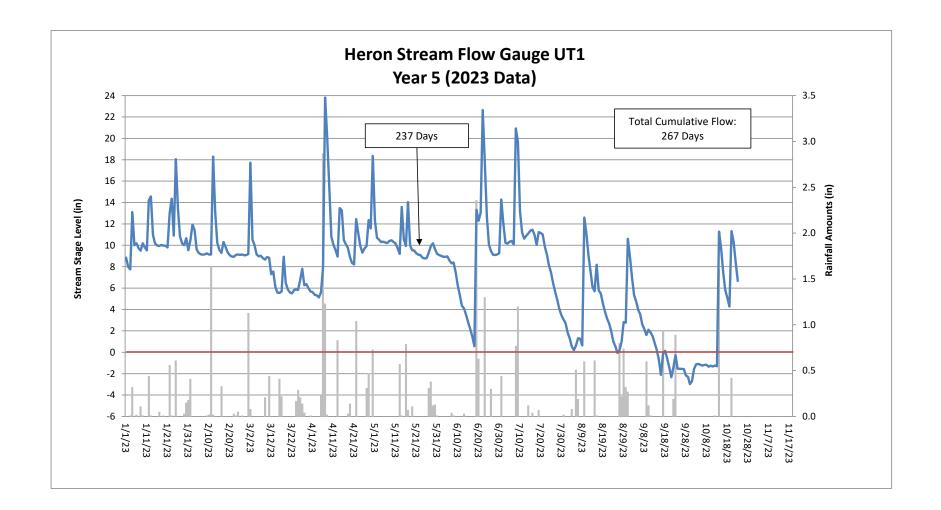
Table 14F. UT6 Channel Evidence

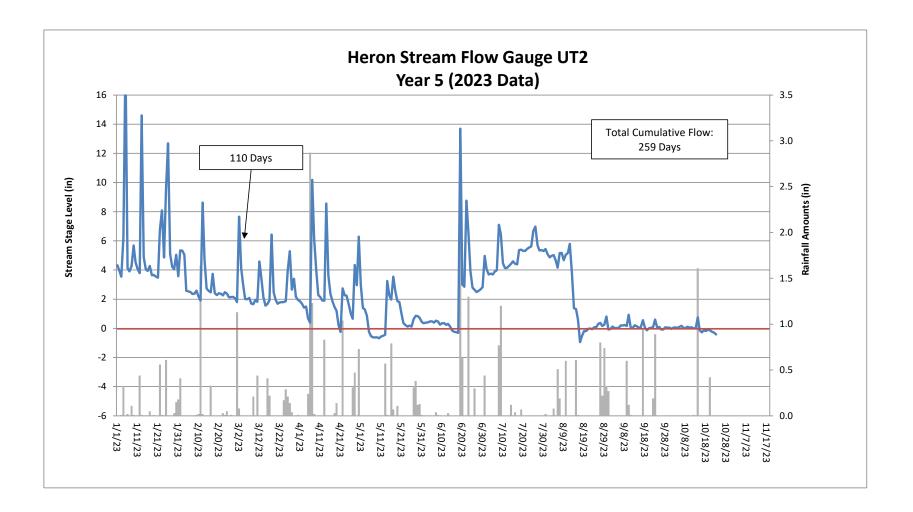
UT6 Channel Evidence		Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	131	187	288	118	282
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)		Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems		Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					

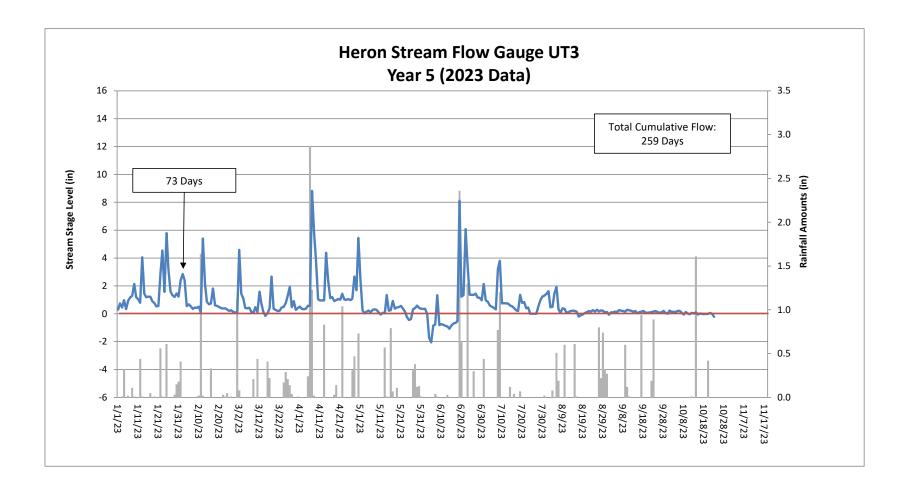
UT7 Downstream Channel Evidence		Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	237	68	144	59	141
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport		Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					

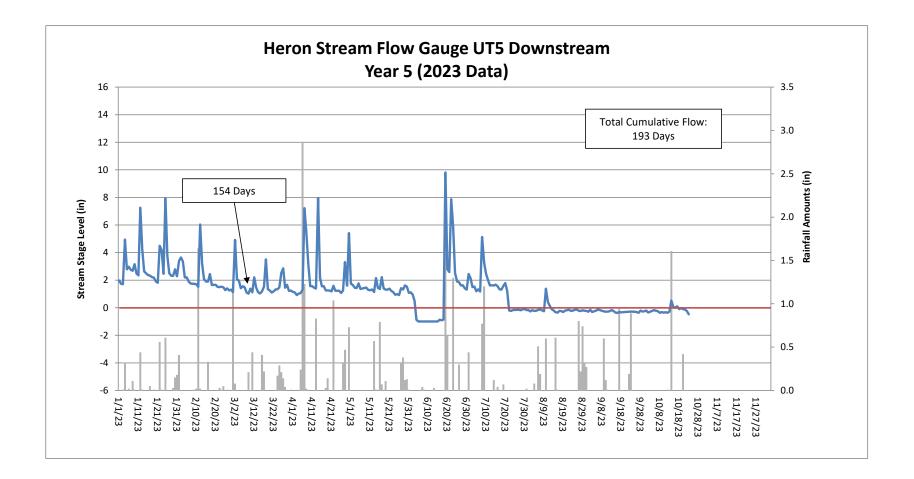
Table 14G. UT7 Downstream Channel Evidence

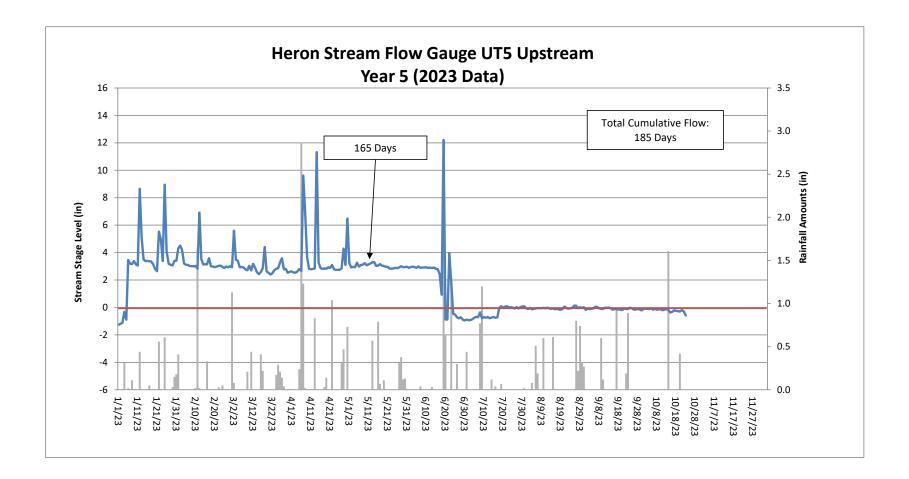
Table 14H. UT7 Middle Channel Evidence


UT7 Middle Channel Evidence		Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	151	106	157	209	229
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport		Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)		Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems		Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					

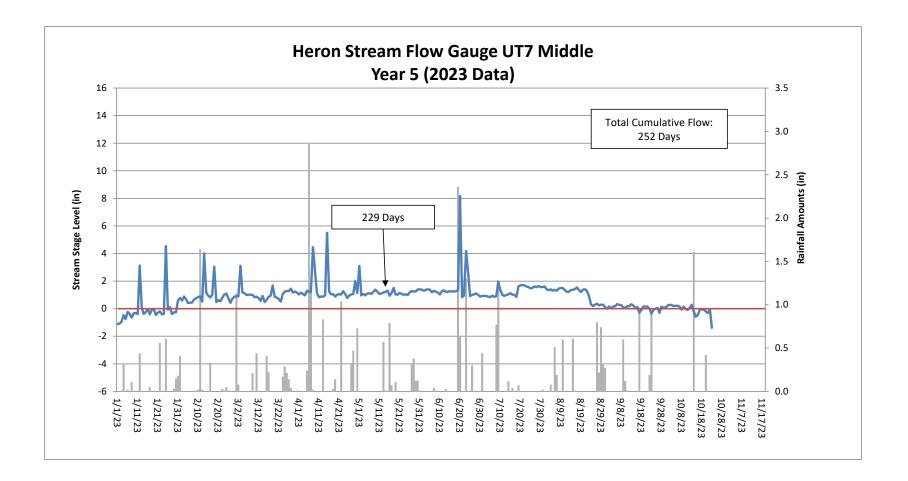

UT7 Upstream Channel Evidence		Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	237	248	107	36	154
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport		Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)		Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					

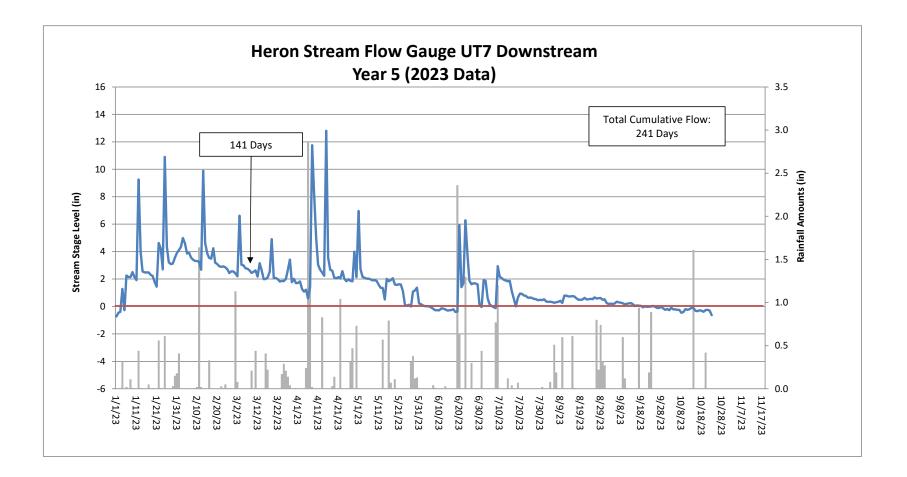

Table 14I. UT7 Upstream Channel Evidence


Table 14J. UT8 Channel Evidence


UT8 Downstream Channel Evidence		Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	49	89	69	108	250
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport		Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow		Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)		Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No	No
Other:					







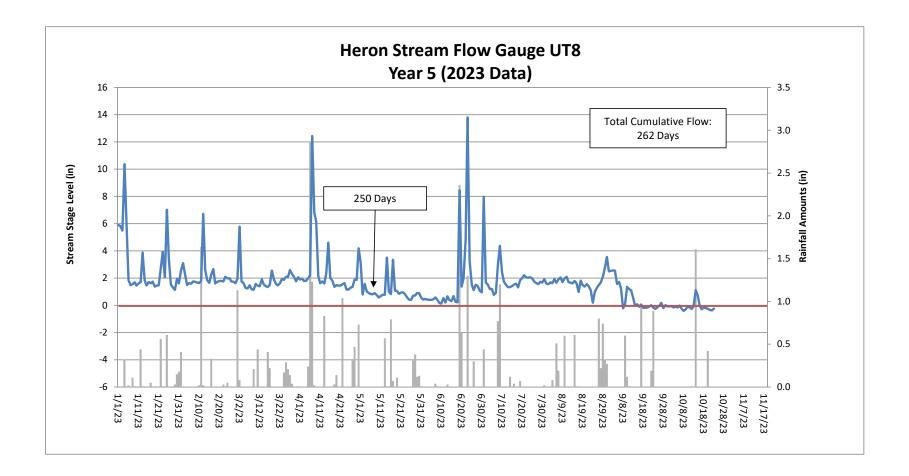
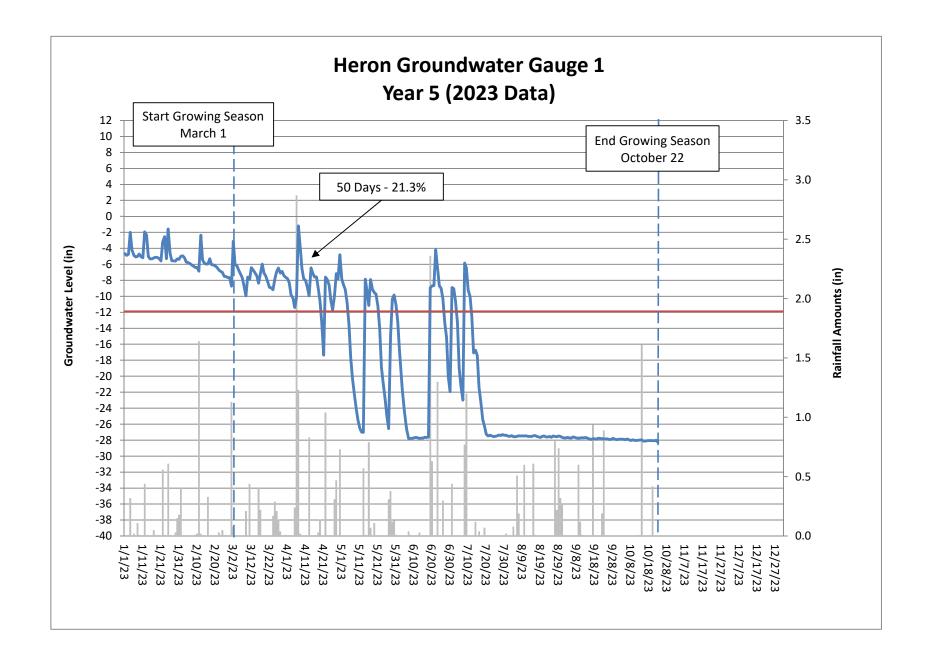
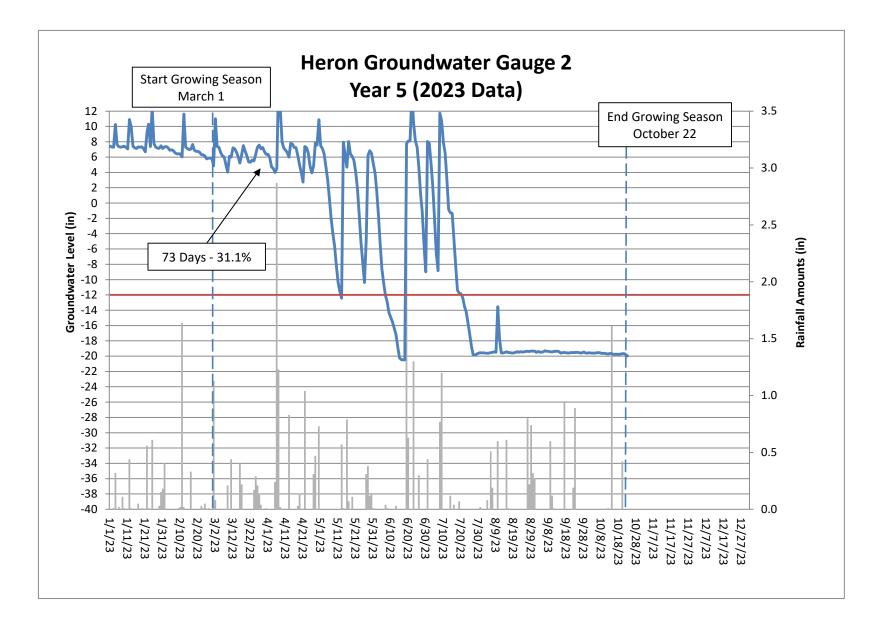


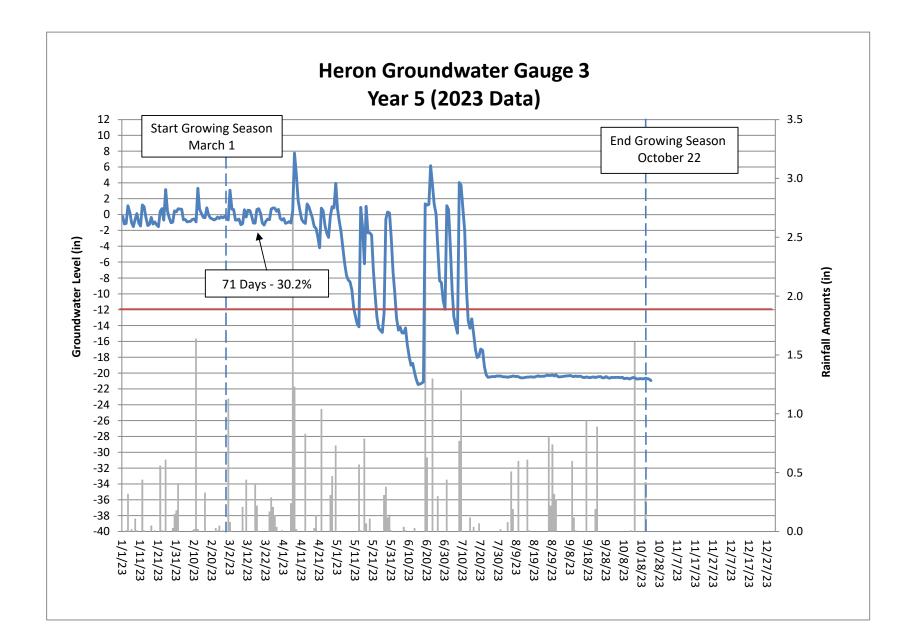
Table 15.	Verification of Bankfull Events
-----------	---------------------------------

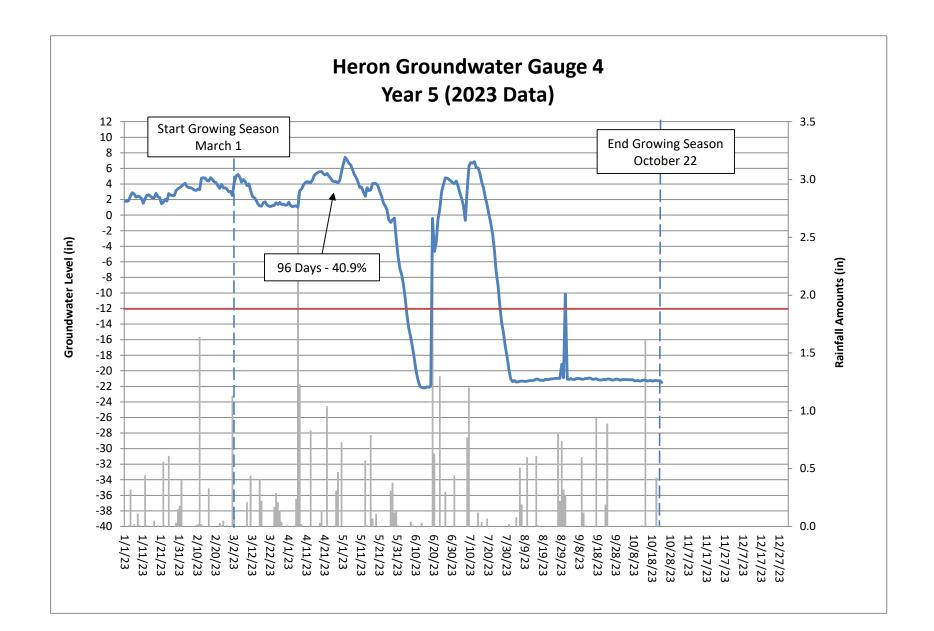
Date of Data Collection	Date of Occurrence	Method	Photo (if available)
August 26, 2019	July 7, 2019	Stream gauge data indicates a bankfull event occurred after 4.06 inches of rain was documented on July 7, 2019 at an onsite rain gauge	
August 26, 2019	August 22, 2019	A bankfull event likely occurred after 7.16 inches of rain was documented between August 20-22, 2019 at an onsite rain gauge	
July 1, 2020	May 21, 2020	Wrack and laid-back vegetation were observed on the TOB of UT4 after 3.03 inches of rain was documented between May 19 and 21, 2020 at an onsite rain gauge.	1
November 16, 2020	November 12, 2020	Wrack and laid-back vegetation were observed on the TOB of UT1 after 3.13 inches of rain was documented between November 11 and 12, 2020 at an onsite rain gauge.	2
December 14, 2020	December 14, 2020	A bankfull event was documented on UT8 by trail camera and stream gauge evidence after 0.82 inches of rain were captured at an onsite rain gauge.	3
January 31. 2021	January 31. 2021	A bankfull was documented on UT3 by trail camera and stream gauge evidence after 0.56 inches of rain were captured by an onsite rain gauge between January 25-28.	4
February 16, 2021	February 13-16, 2021	A bankfull event was documented on UT1B during a site visit after 1.38 inches of rain were captured by an onsite rain gauge between February 13-16, 2021.	5
April 20, 2022	April 19, 2022	A bankfull event was documented during a site visit after 1.76 inches of rain were captured by an onsite rain gauge on April 18-19, 2022.	6-10
May 22, 2023	March 2, 2023	A bankfull event was documented on UT5 by a trail camera and stream gauge after 1.13 inches of rain were captured by an onsite rain gauge.	11
May 22, 2023	April 7, 2023	A bankfull event was documented on UT5 and UT8 by a trail camera and stream gauge after 4.1 inches of rain were captured by an onsite rain gauge over 2 days.	12, 13

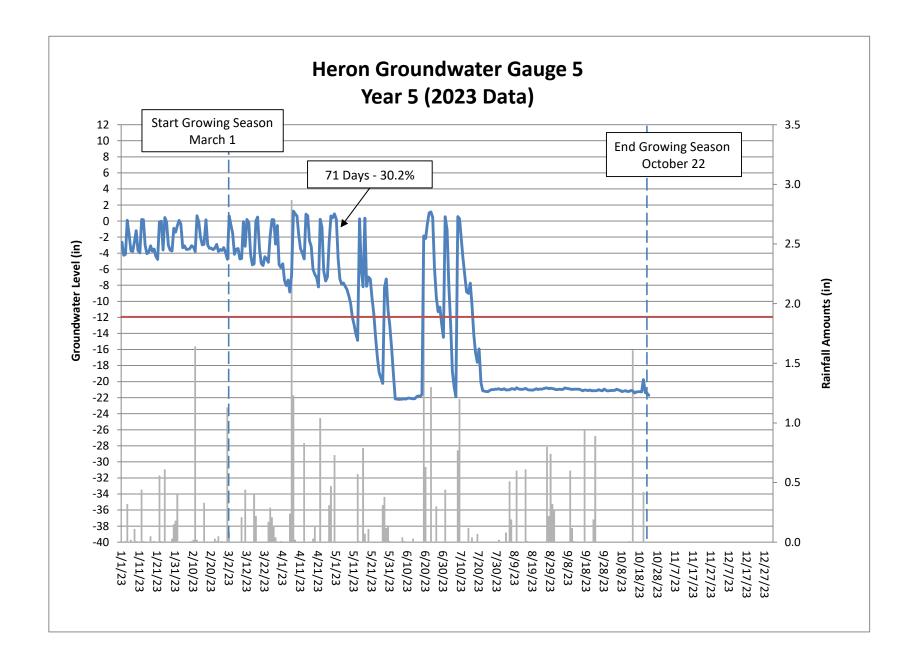
Appendices Restoration Systems, LLC January 2024

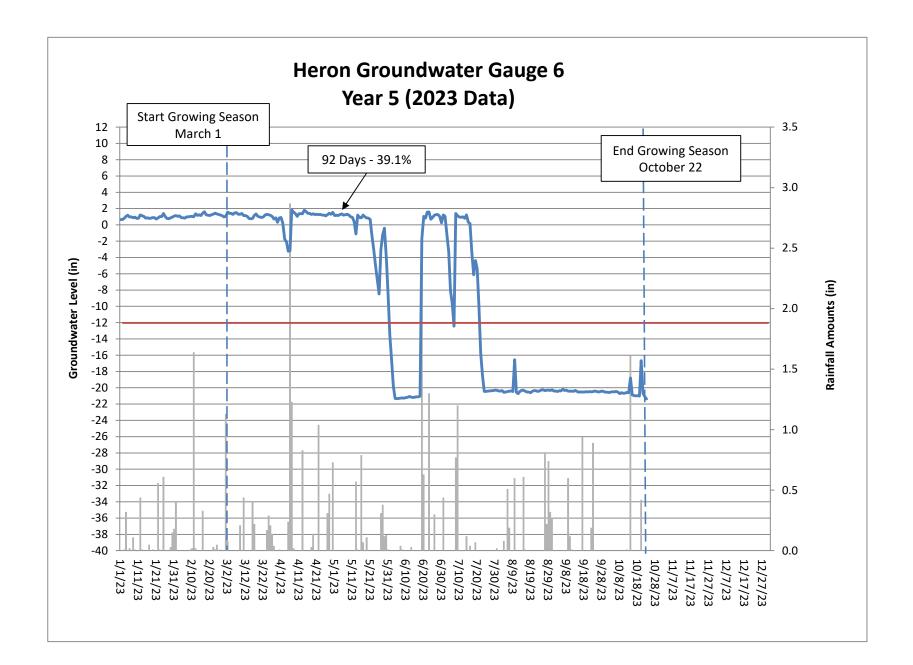


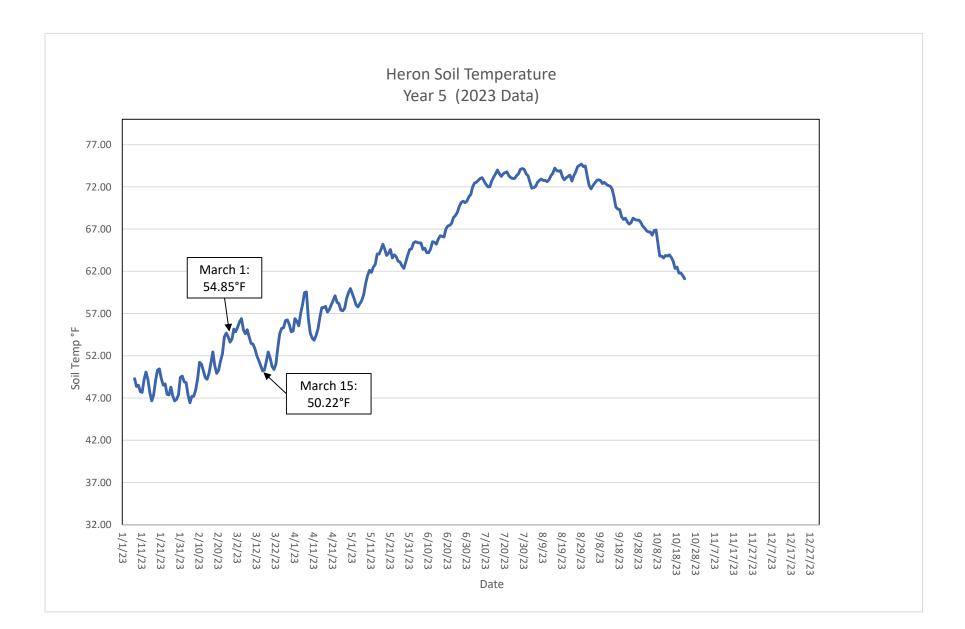


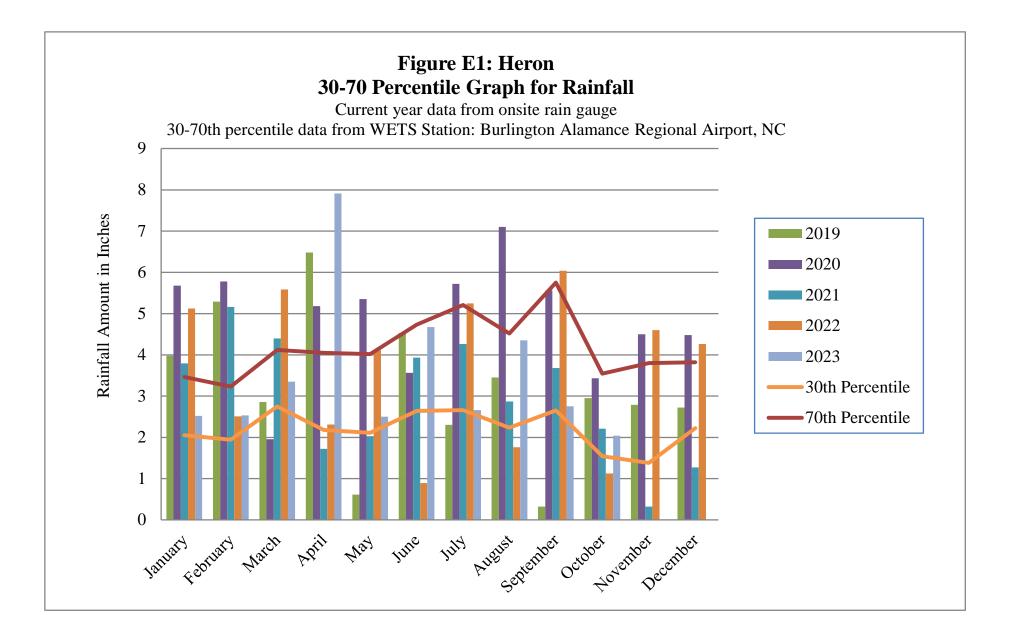



	Succe	ss Criteria Achi	eved/Max Cons	ecutive Days D	uring Growing	Season (Percei	ntage)
Gauge	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)	Year 6 (2024)	Year 7 (2025)
1	Yes/33 days (15.8%)	Yes/23 days (9.8%)	Yes /46 days (19.5%)	Yes /45 days (19.1%)	Yes/50 days (21.3%)		
2	Yes/26 days (12.4%)	Yes/27 days (11.5%)	Yes/47 days (19.9%)	Yes/66 days (28.1%)	Yes/73 days (31.1%)		
3	Yes/35 days (16.7%)	Yes/28 days (12.0%)	Yes/36 days (15.2%)	Yes/66 days (28.1%)	Yes/71 days (30.2%)		
4	Yes/69 days (33.0%)	Yes/51 days (21.8%)	Yes/60 days (25.4%)	Yes/56 days (23.8%)	Yes/96 days (40.9%)		
5	Yes/52 days (24.9%)	Yes/45 days (19.2%)	Yes/50 days (21.2%)	Yes/52 days (22.1%)	Yes/71 days (30.2%)		
6	Yes/54 days (25.8%)	Yes/46 days (19.7%)	Yes/52 days (22.0%)	No/13 days (5.5%)	Yes/92 days (39.1%)		


Table 16. Groundwater Hydrology Data







Appendix F. Benthic Data

Benthic Results Habitat Data Forms

PA ID NO			56920
STATION			Heron
			UT1
DATE			6/13/2023
SPECIES	T.V.	F.F.G.	
PLATYHELMINTHES MOLLUSCA			
Bivalvia			
Veneroida			
Sphaeriidae		FC	
Musculium lacustre		FC	
Pisidium sp.	6.6	FC	2
Gastropoda	0.0		
Basommatophora			
Physidae			
Physella sp.	8.7	CG	
	0.1		
Clitellata			
Oligochaeta		CG	
Lumbriculida			
Lumbriculidae		CG	
Lumbriculus sp.		CG	
Hirudinea		P	
Arhynchobdellida		•	
Erpobdellidae		Р	
Rhynchobdellida		•	
Glossiphoniidae		Р	
Helobdella sp.		P	
ARTHROPODA		•	
Cladocera			
Daphnidae			
Ceriodaphnia sp.			1
Copepoda			
Cyclopoida			
Cyclopidae			
Mesocyclops edax			1
Isopoda			<u> </u>
Asellidae		SH	
	8.4	CG	10
Caecidotea sp. Amphipoda	0.4	CG	10
Crangonyctidae		00	
	70	66	14
Crangonyx sp. Insecta	7.2	CG	14
Ephemeroptera		<u> </u>	
Baetidae		CG	

PA ID NO			56920
STATION			Heron
			UT1
DATE			6/13/2023
SPECIES	T.V.	F.F.G.	
Odonata			
Aeshnidae		Р	
Aeshna umbrosa		Р	
Anax junius		Р	1
Coenagrionidae		Р	3
Corduliidae		-	
Somatochlora sp.	8.9	Р	
Libellulidae	0.0	P	
Libellula vibrans	9.4	P	
	9.4	Г	3
Pachydiplax longipennis	9.0		3
Plecoptera Perlidae		Р	
		-	
Perlesta sp.	2.9	Р	
Hemiptera			
Belostomatidae			
Belostoma sp.	9.5	Р	3
Corixidae		PI	
Hesperocorixa sp.		PI	1
Notonectidae			
Notonecta sp.		Р	1
Megaloptera			
Corydalidae		Р	
Chauliodes rastricornis		Р	
Sialidae		Р	
Sialis sp.	7	Р	
Trichoptera			
Hydropsychidae		FC	
Cheumatopsyche sp.	6.6	FC	
Limnephilidae			
Pycnopsyche sp.	2.5	SH	
Coleoptera			
Dytiscidae		Р	
Neoporus sp.	5		
Thermonectus sp.		Р	1
Hydrophilidae		P	
Tropisternus sp.	9.3	Р	
Diptera	0.0	-	
Chaboridae			
Chaoborus albatus		Р	1
		•	±
Chironomidae			

PA ID NO			56920
STATION			Heron
			UT1
DATE			6/13/2023
SPECIES	T.V.	F.F.G.	
Chironomus sp.	9.3	CG	1
Conchapelopia sp.	8.4	Р	
Cryptochironomus sp.	6.4	Р	
Microtendipes pedellus gp.	3.9	CG	
Natarsia sp.	9.6	Р	
Paratendipes albimanus/duplicatus	5.6		
Procladius sp.	8.8	Р	
Psectrotanypus dyari	10	Р	1
Tanytarsus sp.	6.6	FC	
Zavrelimyia sp.	8.6	Р	
Culicidae		FC	
Anopheles sp.	8.6	FC	4
Culex sp.		FC	13
Psychodidae		CG	
TOTAL NO. OF ORGANISMS			61
TOTAL NO. OF TAXA			17
EPT INDEX			0
BIOTIC INDEX Assigned Values			9.31

H-UT1 3/06 Revision 6 Habitat Assessment Field Data Sheet 17-008 Hora **Mountain/ Piedmont Streams** TOTAL SCORE 40 **Biological Assessment Unit, DWO** Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics. Stream Heron 47-1 Location/road: SNOW (up (Road Name south) County Alamance Date 2206(3) cc#030300 2 Basin (ane fear Subbasin 03-06-04 Observer(s) $\frac{\rho_{\text{H}}\rho_{\text{D}}}{\rho_{\text{D}}}$ Type of Study: \Box Fish \Box Benthos \Box Basinwide \Box Special Study (Describe) Latitude 35-856160 Longitude 19.365460 Ecoregion: MT DP Slate Belt D Triassic Basin Water Quality: Temperature ____ ⁰C DO ____ mg/l Conductivity (corr.) ____ µS/cm рН 🦳 Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use. Visible Land Use: %Fallow Fields % Commercial % Residential 70 % Active Pasture % Active Crops % Active Crops Width: (meters) Stream 1-2.5 Channel (at top of bank) l Stream Depth: (m) Avg .5 Max □ Width variable □ Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) Bank Angle: 125 ° or □ NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) Channelized Ditch Deeply incised-steep, straight banks DBoth banks undercut at bend Channel filled in with sediment Recent overbank deposits □Bar development Buried structures DExposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: IN BY: DRip-rap, cement, gabions D Sediment/grade-control structure Berm/levee Flow conditions : High Normal Cow Turbidity: Clear Slightly Turbid Turbid Turbid Tannic Milky Colored (from dyes) 5 year old El-sean: hellor/ Good potential for Wetlands Restoration Project?? **Channel Flow Status** Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed B. Water fills >75% of available channel, or <25% of channel substrate is exposed..... C. Water fills 25-75% of available channel, many logs/snags exposed..... D. Root mats out of water..... E. Very little water in channel, mostly present as standing pools..... halos only in pools > Weather Conditions: Wor u Photos: DN DY Digital D35mm 10-4 Remarks:

	H-uT
I. Channel M	
×	A. channel natural, frequent bends
]	B. channel natural, infrequent bends (channelization could be old)
(C. some channelization present
]	D. more extensive channelization, >40% of stream disrupted
1	E. no bends, completely channelized or rip rapped or gabioned, etc
Evidence o	of dredging Evidence of desnagging=no large woody debris in stream Banks of uniform shape/height
Remarks	Subtotal

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as Rare, Common, or Abundant.

RocksMacrophytesSticks and leafpack	sS	nags and logs 👱	Undercut bank	ks or root	mats
AMOUNT OF REACH FAVO	RABLE 1	FOR COLONIZA	TION OR COV	ER	
	>70%	40-70%	20-40%	<20%	ST. 6 & F
	Score	Score	Score	Score	97 F.
4 or 5 types present	20	16	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				n
□ No woody vegetation in riparian zone Remarks_	114	<u> </u>			Subtotal []

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks. Score

A, substrate with good mix of gravel, cobble and boulders

1. embeddedness <20% (very little sand, usually only behind large boulders)	A. substrate with good mix of gravel, coople and bounders	SCOLO	ž –
2. embeddedness 20-40%	1. embeddedness <20% (very little sand, usually only behind large boulders)	15	
4. embeddedness >80%	2. embeddedness 20-40%	12	
4. embeddedness >80%	3. embeddedness 40-80%	8	
B. substrate gravel and cobble 14 1. embeddedness <20%	4. embeddedness >80%	3	
2. embeddedness 20-40%	B. substrate gravel and cobble		
3. embeddedness 40-80% 6 4. embeddedness >80% 2 C. substrate mostly gravel 1. embeddedness <50%	1. embeddedness <20%	14	
3. embeddedness 40-80% 6 4. embeddedness >80% 2 C. substrate mostly gravel 1. embeddedness <50%	2. embeddedness 20-40%	11	
4. embeddedness >80%	3. embeddedness 40-80%	6	
1. embeddedness <50%	4. embeddedness >80%	2	
1. embeddedness <50%	C. substrate mostly gravel		
2. embeddedness >50%	1. embeddedness <50%	8	
1. substrate nearly all bedrock	2. embeddedness >50%	4	
 2. substrate nearly all sand	D. substrate homogeneous		
 2. substrate nearly all sand	1. substrate nearly all bedrock	3	
 substrate nearly all detritus	2. substrate nearly all sand	3	
4. substrate nearly all silt/ clay	3. substrate nearly all detritus	2	
	4. substrate nearly all silt/ clay	. 1	6
			0

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	~
a. variety of pool sizes	(10)
b. pools about the same size (indicates pools filling in)	. 8
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	6
b. pools about the same size	
B. Pools absent	· · · · ·
	Subtotal U
	and an damath

Devel bottom boulder-cobble=hard Dettom sandy-sink as you walk Silt bottom Some pools over wader depth Remarks Page Total > J

H-UTI

V. Riffle Habitats

-12

VI AMIG HADICALD			
Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area.	Riffles Frequent	Riffles In	ifrequent
	Score	Score	
A. well defined riffle and run, riffle as wide as stream and extends 2X width of s	stream (16)	12	
B. riffle as wide as stream but riffle length is not 2X stream width		7	
C. riffle not as wide as stream and riffle length is not 2X stream width		3	
D. riffles absent.	0		16
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream		Subt	otal 10
VI. Bank Stability and Vegetation			
FACE UPSTREAM	Le	ft Bank 📃	Rt. Bank
		Score	Score

_

1.	nks stable little evidence of erosion or bank failure(except outside of bends), little potential for erosion (Ð	đ
B. Ere	osion areas present		
1.	diverse trees, shrubs, grass; plants healthy with good root systems	6	б
	few trees or small trees and shrubs; vegetation appears generally healthy	5	5
	sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3	3
	mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow.	2	2
	little or no bank vegetation, mass erosion and bank failure evident		014
	Ç		Total (
Remarks			

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric. a

A. Stream with good canopy with some breaks for light penetration	10 Score
B. Stream with full canopy - breaks for light penetration absent	õ
C. Stream with partial canopy - sunlight and shading are essentially equal	7
D. Stream with minimal canopy - full sun in all but a few areas	2
E. No canopy and no shading	0
	10
Remarks	Subtotal_10

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft. Ban	k Rt. Bank
Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, e	etc) Score	Score
A. Riparian zone intact (no breaks)		
1. width > 18 meters	5	5
2. width 12-18 meters	A)	<u>(4)</u>
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1 💿
d. width < 6 meters	0	0 0
Remarks		Total 💍
	Page	
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	TOTAL SCO	RE

3/06 Revision 6

* Bone Dry - No samples

17-008	Hpron
Biological Assessment	Unit, DWQ

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

TOTAL SCORE

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.

Stream Herow 4T-5 Location/road: SNOW (unp (Road Name Gould Sar K) County Alaman	L
Date 4 13 23 cc#03030002 Basin Care fea - Subbasin 03-06-04	
Observer(s) BF DM Type of Study: D Fish DBenthos D Basinwide DSpecial Study (Describe)	
Latitude 35,85215 angitude 19.361977 Ecoregion: DMT DP Slate Belt DTriassic Basin	
Water Quality: Temperature ⁰ C DOmg/1 Conductivity (corr.)µS/cm pH	
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - inc you estimate driving thru the watershed in watershed land use.	lude what
Visible Land Use: 0 %Forest %Residential %Active Pasture 0 %Active Crops 10 %Fallow Fields 0 %Commercial 0 %Industrial 0 %Other - Describe: 0	
Watershed land use : ØForest Agriculture Urban Animal operations upstream	
Width: (meters) Stream 2^{\prime} Channel (at top of bank) 5^{\prime} Stream Depth: (μ) Avg 0 Max 0 Width variable \Box Large river >25m wide	
Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (in)	
Bank Angle:° or NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-cha indicate slope is away from channel. NA if bank is too low for bank angle to matter.)	nnel, < 90°
□ Channelized Ditch □Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment	
Deeply incised-steep, straight banks Both banks undercut at bend Channel filled in with sediment	
□ Deeply incised-steep, straight banks □Both banks undercut at bend □ Channel filled in with sediment □ Bar development □ Baried structures □ Excessive periphyton growth □ Heavy filamentous algae growth □ Green tinge □ Sewage smell	
□ Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures □Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: PN □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions : □High □Normal PLow \$65.00.5	
□ Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures □Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: PN □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions : □High □Normal PLow \$65.00.7 ✓ Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes)	
□ Deeply incised-steep, straight banks □Both banks undercut at bend □ Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures ☑Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: ☑N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions : □High □Normal ☑Low Kosent ✓Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes) Good potential for Wetlands Restoration Project?? ☑YES □NO Details Channel Flow Status	
□ Deeply incised-steep, straight banks □Both banks undercut at bend □ Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures ☑Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: ☑N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions : □High □Normal ☑Low Kosent ✓Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes) Good potential for Wetlands Restoration Project?? ☑YES □NO Details Channel Flow Status Useful especially under abnormal or low flow conditions.	
□Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures ☑Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: ☑N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions : □High □Normal ☑Low ₩0540~7 ✓Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes) Good potential for Wetlands Restoration Project?? ☑YES □NO Details Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed□	
□Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures ☑Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: ☑N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions : □High □Normal ☑Low Kosent ✓Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes) Good potential for Wetlands Restoration Project?? ☑YES □NO Details Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed□ B. Water fills >75% of available channel, or <25% of channel substrate is exposed□	
□Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures ☑Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: ☑N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions : □High □Normal ☑Low № 54.0 ¹ ✓ ✓ Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes) Good potential for Wetlands Restoration Project?? ☑ YES □NO Details	During
□Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures ☑Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: ☑N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions : □High □Normal ☑Low #0520.1 ○ YES □NO Details Good potential for Wetlands Restoration Project?? ☑ YES □NO Details □ Channel Flow Status □ Useful especially under abnormal or low flow conditions. □ □ A. Water reaches base of both lower banks, minimal channel substrate exposed □ □ B. Water fills >75% of available channel, or <25% of channel substrate is exposed.	Dny
□Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures ☑Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: ☑N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions : □High □Normal ☑Low № 54.0 ¹ ✓ ✓ Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes) Good potential for Wetlands Restoration Project?? ☑ YES □NO Details	Dny

I. Channel Modification	Score
A. channel natural, frequent bends	21
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	0
□ Evidence of dredging □Evidence of desnagging=no large woody debris in stream □Banks of uniform shape/hei	ght
RemarksSub	total <u>D</u>

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as Rare, Common, or Abundant.

<u>C</u> Rocks <u>C</u> Macrophytes <u>C</u> Sticks and leafpack	is <u>F</u> Sr	ags and logs	Undercut ban	ks or root	mats
AMOUNT OF REACH FAVO	RABLE F	OR COLONIZA	ATION OR COV	ER	
	>70%	40-70%	20-40%	<20%	10 Y 34
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	Ø	13	9	5	
No types present	0				17
□ No woody vegetation in riparian zone Remarks_	1.20				Subtotal /

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.

Tor embeddednies, and use rooks from an parts of time rook for and the or antenny ended and so the	~	
A. substrate with good mix of gravel, cobble and boulders	<u>Scor</u>	<u>'e</u>
1. embeddedness <20% (very little sand, usually only behind large boulders)	15	
2. embeddedness 20-40%	8	
3. embeddedness 40-80%	8	
4. embeddedness >80%	3	
B. substrate gravel and cobble		
1. embeddedness <20%	14	
2. embeddedness 20-40%	11	
3. embeddedness 40-80%	6	
4. embeddedness >80%	2	
C. substrate mostly gravel		
1. embeddedness <50%	8	
2. embeddedness >50%	4	
D. substrate homogeneous		
1. substrate nearly all bedrock	3	
2. substrate nearly all sand	3	
3. substrate nearly all detritus	2	
4. substrate nearly all silt/ clay	1	2
Remarks	Subtotal_	

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	5
a. variety of pool sizes	Clor
b. pools about the same size (indicates pools filling in)	
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	б
b. pools about the same size	
B. Pools absent	
	Subtotal 0
Pool bottom boulder-cobble=hard 🛛 Bottom sandy-sink as you walk 🖾 Silt bottom 🗔	Some pools over wader depth
Remarks	

- - -

.

V. Riffle Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Riffles Infrequent	ıt
Score Score	
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream	
B. riffle as wide as stream but riffle length is not 2X stream width	
C. riffle not as wide as stream and riffle length is not 2X stream width 10 3	
D. riffles absent.	į
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream Subtotal	
VI. Bank Stability and Vegetation	
FACE UPSTREAM Left Bank Rt. Bank	
<u>Score</u> <u>Score</u>	
A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion7)	
B. Erosion areas present	
1. diverse trees, shrubs, grass; plants healthy with good root systems	
2. few trees or small trees and shrubs; vegetation appears generally healthy	
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow 2 2	
5. little or no bank vegetation, mass erosion and bank failure evident	4
Total	1
Remarks	

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

Remarks	Subtotal
E. No canopy and no shading	0
D. Stream with minimal canopy - full sun in all but a few areas	2
C. Stream with partial canopy - sunlight and shading are essentially equal	0
B. Stream with full canopy - breaks for light penetration absent	8
A. Stream with good canopy with some breaks for light penetration	10
	Score

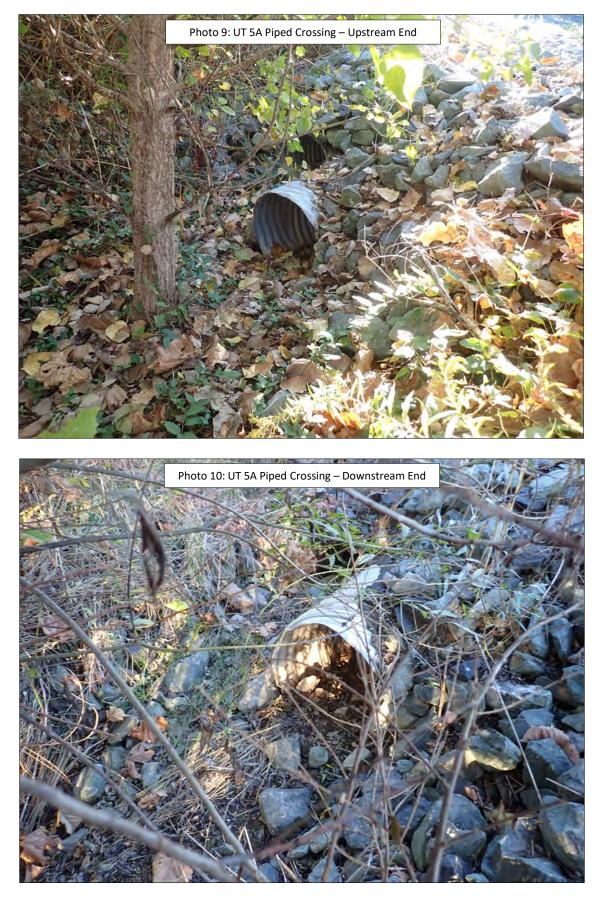
VIII. Riparian Vegetative Zone Width

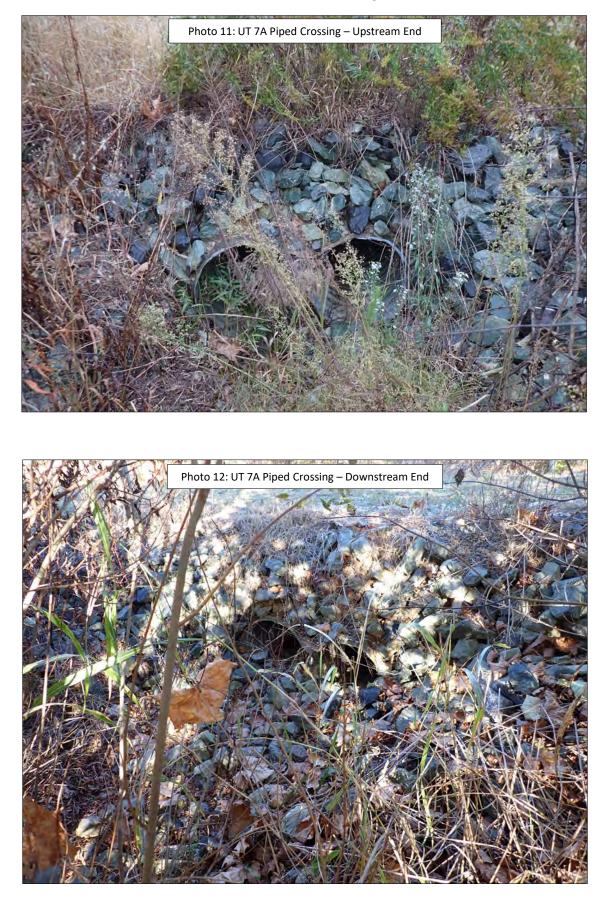
Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)		
1. width > 18 meters	5	5
2. width 12-18 meters	4	4
3. width 6-12 meters	B)	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	014
Remarks	Т	Total 🔍
	Page To	tal 43

Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.

Appendix G. Site Photo Log




Heron MY-05 (2023) Photo Log

Heron MY-05 (2023) Photo Log

